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Abstract. We apply techniques from complexity theory to a model of biological
cellular membranes known as membrane systems or P-systems. Like Boolean circuits,
membrane systems are defined as uniform families of computational devices. To date,
polynomial time uniformity has been the accepted uniformity notion for membrane
systems. Here, we introduce the idea of using AC0-uniformity and investigate the
computational power of membrane systems under these tighter conditions. It turns out
that the computational power of some systems is lowered from P to NL when using
AC0-semi-uniformity, so we argue that this is a more reasonable uniformity notion
for these systems as well as others. Interestingly, other P-semi-uniform systems that
are known to be lower-bounded by P are shown to retain their P lower-bound under
the new tighter semi-uniformity condition. Similarly, a number of membrane systems
that are known to solve PSPACE-complete problems retain their computational
power under tighter uniformity conditions.
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1. Introduction

Membrane systems [12] are a model of computation inspired by living
cells. In this paper we explore the computational power of cell dissolution
(reminiscent of apoptosis) by investigating a variant of the model called
active membranes [11], originally developed to study the computational
power of cell division (as a simple abstraction of, say, binary fission
in cells). We focus on how uniformity conditions (or precomputation)
affect the computational power of the model. An instance of the model
consists of a number of (possibly nested) membranes, or compartments,
which themselves contain objects. During a computation, objects evolve
to become other objects or pass through membranes by the application
of rules. In the active membrane model it is also possible for a membrane
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to completely dissolve and for a membrane to divide into two child
membranes.

The active membrane model can be regarded as a model of parallel
computation, however it has a number of features that make it somewhat
unusual when compared to other parallel models. For example rule selec-
tion is nondeterministic, confluence plays an important role, membranes
contain multisets of objects and there are many parameters to the mode.
In order to clearly see the power of the model we analyse it from the
computational complexity point of view, the goal being to characterise
the model in terms of the set of problems that it can solve in a reasonable
amount of time. One can also interpret our results as classifying the
computational complexity of simulating biological phenomena that are
modelled by the membrane systems under consideration.

Another, more specific, motivation is the so-called P-conjecture [13]
which states that recogniser membranes systems with division rules
(active membranes), but without charges, characterise P. On the one
hand, it was shown that this conjecture does not hold for systems
with non-elementary division as PSPACE upper [15] and lower [1]
bounds were found for this variant (non-elementary division is where a
membrane containing multiple membranes and objects may be copied
in a single timestep). On the other hand, the P-conjecture was thought
to hold for all active membrane systems without dissolution rules, when
Gutiérrez-Naranjo et al. [5] gave a P upper-bound. The corresponding
P lower-bound (trivially) came from the fact that the model is defined
to be P-uniform, which we now explain.

Like Boolean circuits, membrane systems can be defined as families
of finite devices. In order to prevent such a family from being too
powerful, we define the family to have an associated algorithm that
maps each problem instance size to a family member. This algorithm
effectively ensures that family members are algorithmically related, and
prevents the family definition from hiding resources that are difficult to
precompute. A closely related notion is semi-uniformity, where we map
each problem instance directly to a membrane system using a suitably
restricted algorithm. Since much of the work on the complexity of mem-
brane systems has been concerned with whether or not polynomial time
membrane systems exist for solving intractable problems, polynomial
time uniformity, or P-uniformity, has been commonly used.

However, the aforementioned P lower-bound highlights a problem
with using P-uniformity, as it does not tell us whether this membrane
model itself has (in some sense) the ability to solve all of P in polynomial
time, or if the uniformity condition is providing the power. In fact, in
Section 3 we show that when we use restricted, and more reasonable,
uniformity conditions the model does not have the ability to solve all
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problems in P (assuming P 6= NL). Essentially we prove that semi-
uniform and uniform families of polynomial time active membrane
systems, without dissolution rules, solve no more than those problems
in NL. This is despite the fact that these systems run for polynomial
time (and can even create exponentially many objects and membranes).
This result is illustrated by the bottom four nodes in Figure 1.

In Section 4 we also give a corresponding NL lower-bound for AC0-
semi-uniform families of systems without dissolution indicating that
the upper-bound is tight (although we slightly relax the definition of
recogniser in order to simplify the construction1). Therefore, in the
semi-uniform case, we have a characterisation of NL which is illustrated
by the bottom left two nodes in Figure 1.

So far, we have mentioned four models which characterise P under P-
uniformity but are instead upper-bounded by NL under AC0-uniformity
(or L-uniformity). However, we claim that if a lower-bound is given
by a membrane system construction and not by exploiting a powerful
uniformity/semi-uniformity condition, then the power of the model
should be unaffected by the change to a less-powerful uniformity/semi-
uniformity condition. Interestingly, in Section 5 we show that another
P-uniform membrane system model (with dissolution but no division)
known [17] to characterise P actually retains this P characterisation
when restricted to be AC0-semi-uniform (or L-semi-uniform). To show
this, we give an AC0-semi-uniform family of membrane systems with
dissolution rules that solves a P-complete problem. This is illustrated
by the top front left node in Figure 1.

Finally, in Section 6, we show that the aforementioned PSPACE
characterisations (top back two nodes in Figure 1) remain unchanged
under tighter uniformity conditions.

2. Membrane Systems

In this section we define active membrane systems and some complex-
ity classes. These definitions are based on those from Păun [11, 12],
Pérez-Jiménez et al. [14], and Sośık and Rodŕıguez-Patón [15]. We
also introduce the notion of AC0-uniformity and AC0-semi-uniformity
for membrane systems. The set of all multisets over a set A is de-
noted MS(A).

1 See [8] for a construction that works for the standard definition of recogniser.
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Figure 1. A diagram showing the currently known upper and lower-bounds on vari-
ants of chargeless active membranes systems with uniformity conditions computable
in L or stricter. The lower part of each node indicates the properties that system:
the parameter “-d” indicates type (d) rules are prohibited while “-f” means type (f)
rules are prohibited, “uni” and “semi” indicate uniform and semi-uniform families
respectively. The top part of a split node represents the best known upper-bound,
and the lower part the best known lower-bound. A node with a single complexity
class represents a characterisation. Arrows represent inclusions.

2.1. Active membrane systems

Active membrane systems are a class of membrane systems with mem-
brane division rules. Division rules can either only act on elementary
membranes, or else on both elementary and non-elementary mem-
branes. An elementary membrane is one which does not contain other
membranes (a leaf node, in tree terminology).

DEFINITION 1. An active membrane system without charges is a
6-tuple Π = (O,µ,M,H,L,R) where:

1. O is the alphabet of objects (or the set of object types);

2. µ = (Vµ, Eµ, r) is a rooted tree representing the membrane structure
where Vµ ( N is finite, Eµ ( Vµ × Vµ, and root r ∈ Vµ;

3. M : Vµ → MS(O) maps membranes to their object multisets;

4. H is the finite set of membrane labels;

5. L : Vµ → H is an injective mapping of membranes to labels;

6. R is a finite set of developmental rules of the following types
(where a, b, c ∈ O and u ∈ MS(O), h ∈ H):

(a) [ a → u ]h (object evolution),
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(b) a [ ]h → [ b ]h (communication in),

(c) [ a ]h → [ ]h b (communication out),

(d) [ a ]h → b (membrane dissolution),

(e) [ a ]h → [ b ]h [ c ]h, (elementary membrane division),

(f) [ [ ]h1 [ ]h2 ]h → [ [ ]h1 ]h [ [ ]h2 ]h, (strong non-elementary mem-
brane division).

The vertices Vµ of the membrane structure tree µ are the individual
membranes of the system. The ultimate container of all membranes
in the system (the root vertex r in µ) is called the skin and has label
0 ∈ H (when defining rules we let 0 = skn). A configuration C of a
membrane system is a tuple (µ,M,L) whose elements are defined in
Definition 1 (with the exception that L may be surjective). A permissible
encoding of a membrane system 〈Π〉, or of a configuration 〈C〉, encodes
all multisets in a unary manner. For example, a multiset should be
encoded in the format [ a, a, a, b, b ], rather than in the shorter form a3b2,
in order to ensure that at most a polynomial number of objects are
initially encoded in a system. We also permit the use of a blank symbol
(denoted ) which may be inserted at any point in the encoding.

The rules in the set R are applied to a configuration according to
the following principles:

− All the rules are applied in a maximally parallel manner. That is,
each timestep a multiset of applicable rules is non-deterministically
chosen such that any further rules added to the set cannot be
applied in that timestep.

− If a membrane is divided by a rule of type (e) or (f) and there are
objects in this membrane which evolve via rules of type (a), then
we assume that first the evolution rules are applied, and then the
division rule. This process takes only one step.

− The rules with label h are used with membranes with label h. In
each timestep, a membrane can be the subject of only one rule of
types (b)–(f).

A computation of a membrane system is a maximal sequence of
configurations such that each configuration (except the initial one) is
obtained from the previous one by a transition (one-step maximally par-
allel application of the rules). Membrane systems are non-deterministic,
therefore on a given input there are multiple possible computations.
A computation that reaches a configuration where no more rules are
applicable is called a halting computation.
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DEFINITION 2. A recogniser membrane system is a membrane sys-
tem Π such that:

1. all computations halt,

2. yes, no ∈ O,

3. the object yes or object no (but not both) appear in the multiset of
the membrane with label 0 (or “skn”),

4. and this happens only in the halting configuration.

2.2. Complexity classes

We introduce the notion of AC0-semi-uniformity and AC0-uniformity to
membrane systems. Throughout this paper, AC0 is the set of problems
solved by DLOGTIME-uniform, polynomial sized (in input length n),
constant depth, circuits with AND, OR and NOT gates, and unbounded
fan-in [3]. FP, FL, and FAC0 are the classes of functions that are
respectively computable by deterministic Turing Machines in polynomial
time, by deterministic Turing machines using logarithmic space, and
by DLOGTIME-uniform polynomial-sized Boolean circuits with un-
bounded fan-in and constant depth. Previous work on the computational
complexity of membrane systems used (Turing machine) polynomial
time uniformity [14]. (A notable exception is the logspace semi-uniform
membrane system family by Obtu lowicz [9].)

A problem is a set X = {x1, x2, . . .} ⊆ Σ∗ and its complement
is X = Σ∗−X where Σ is some finite alphabet. We say that a family Π
of membrane systems recognises a problem X if for each x ∈ Σ∗ there
is some Π ∈ Π that decides if x ∈ X. We let |x| = n denote the length
of a problem instance x ∈ Σ∗.

DEFINITION 3. Let R be a class of recogniser membrane systems and
let t : N→ N be a total function. Let E and F be classes of functions.
The class of problems solved by an (E,F)-uniform family of membrane
systems of type R in time t, denoted (E,F)–MCR(t), contains all
problems X such that:

− There exists an F-uniform family of membrane systems, Π =
{Π1,Π2, . . .} of type R: that is, there exists a function f ∈ F, f :
{1}∗ → Π such that f(1n) = Πn.

− There exists an input encoding function e ∈ E, e : X ∪X → MS(I)
such that e(x) is the input multiset, which is placed in a specific
input membrane of Π|x|, and I ( O is the set of input objects.
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− Π is t-efficient: Πn always halts in at most t(n) steps.

− The family Π is sound with respect to (X, e, f); that is, if there is
an accepting computation of the system Π|x| on input multiset e(x)
then x ∈ X.

− The family Π is complete with respect to (X, e, f); that is, for
each input x ∈ X, each computation of the system Π|x| on input
multiset e(x) is accepting.

We now define semi-uniform families of membrane systems where a
single function (rather than two) is used to construct the family. For
each instance x ∈ X ∪X we have a (possibly unique) membrane system
which does not need a separately constructed input, a clear departure
from the spirit of circuit uniformity.

DEFINITION 4. Let H be a class of functions. The class of problems
solved by a (H)-semi-uniform family of membrane systems of type R
in time t, denoted (H)–MC∗R(t), contains all problems X such that:

− There exists a H-semi-uniform family Π = {Πx1 ,Πx2 , . . .} of mem-
brane systems of type R: that is, there exists a function h ∈ H, h :
X ∪X → Π such that h(xi) = Πxi.

− Π is t-efficient: Πx always halts in at most t(|x|) steps.

− The family Π is sound with respect to (X,h); that is, for each x ∈
Σ∗, if there exists an accepting computation of the system Πx

then x ∈ X.

− The family Π is complete with respect to (X,h); that is, for
each x ∈ X every computation of the system Πx is accepting.

We define the set of languages decided by uniform families of polynomial
time membrane systems to be

(E,F)–PMCR =
⋃
k∈N

(E,F)–MCR(nk),

and the set of languages decided by semi-uniform families of polynomial
time membrane systems to be

(H)–PMC∗R =
⋃
k∈N

(H)–MC∗R(nk).

When the symbols E, F, and H are replaced by complexity class names
such as AC0, L or P it means that the uniformity conditions under
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consideration are in the function versions of these classes. For example,
if we let E = F = AC0 then we mean that the functions e ∈ E
and f ∈ F are computable in uniform FAC0 and we say that we have
an AC0-uniform family.

Let AM0
−d denote the class of membrane systems that obey Def-

inition 2, and Definition 1 but without dissolution rules (type (d)).
Then (AC0,AC0)–PMCAM0

−d
(respectively, (AC0)–PMC∗AM0

−d
) de-

notes the class of problems solvable by AC0-uniform (respectively, AC0-
semi-uniform) families of polynomial time active membrane systems
without charges and with no dissolution rules.

A family of membrane systems is said to be confluent if it is both
sound and complete with respect to (X, e, f) in the uniform case and to
(X,h) in the semi-uniform case. That is, each membrane system Π in a
confluent family starts from a fixed initial configuration (from either
h(x), or f(1|x|) and e(x)). Then, the system Π non-deterministically
chooses one from a number of valid computations (configuration se-
quences). All of these valid computations give the same result: either
always accepting (if x ∈ X) or else always rejecting (if x /∈ X). All
membrane system families in this paper are confluent.

FAC0 is usually defined using uniform Boolean circuits, however,
it can be cumbersome to use uniform circuits to define uniformity
conditions on membrane systems. FAC0 is also characterised by a
number of models that are easier to analyse such as the constant time
Concurrent Random Access Machine (constant time CRAM) [2, 7]. We
often use a CRAM algorithm to demonstrate that families of membrane
systems are AC0-uniform. We give a brief definition, see Immerman [7]
for details.

DEFINITION 5. (CRAM [7]). A CRAM is a concurrent-read concurrent-
write parallel model of computation. A CRAM has a polynomial number
of processors, each with a unique processor number, that share a common
global memory. Processors run programs that act on words in memory
and have instructions to add, subtract, branch, and shift by a polynomial
number of bits.

3. NL upper-bound on active membranes without
dissolution rules

Previously the upper-bound on all active membrane systems without
dissolution was P [5], that is (P)–PMC∗AM0

−d
⊆ P. Since membrane

systems are usually P-uniform, this P upper-bound was considered a
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P characterisation. However, having a lower-bound of the same power
as the uniformity condition is somewhat unsatisfactory, as it tells us
little about the computing power of the actual membrane system itself.
This is because the algorithm that encodes the input (the function e
in the uniform case, or h in the semi-uniform case) takes an instance
of the problem as input. If the input encoder is sufficiently powerful
then it may simply solve the problem and output a yes or no object
directly. To get an accurate idea of the power of a model it is advisable
to restrict the uniformity conditions to be as weak as possible [3].

In this section we show that when we restrict the (semi-)uniformity
conditions to be computable in FAC0, or even FL, we tighten the known
upper-bound from P to NL. The proof of the P upper-bound in [5]
involves the construction of a dependency graph representing all possible
computation paths of a membrane system on an input. The dependency
graph for a membrane system Π is a directed graph GΠ = (V, E). Each
vertex v in the graph is a pair v = (a, h) ∈ O×H, where O is the set of
objects and H is the set of membrane labels. An edge connects vertex u
to vertex v if there is an evolution rule such that the left hand side of
the rule has an object-membrane pair matching u and the right has an
object-membrane pair matching v. We formally define this as follows
(where parent(i) is the parent membrane of i in the membrane structure
µ of Π).

DEFINITION 6. Let Π be a recogniser active membrane system without
charges and without dissolution rules (AM0

−d). Let R be the set of rules
associated with Π. The dependency graph associated with Π is the
directed graph GΠ = (V, E) defined as follows:
V = O ×H, E = {((a, h), (b, h′)) |

([ a → u ]h ∈ R, b ∈ u, u ∈ MS(O), h = h′) ∨
(a[ ]h′ → [ b ]h′ ∈ R, i ∈ Vµ, h = L(parent(i)), h′ = L(i)) ∨
([ a ]h → [ ]hb ∈ R, i ∈ Vµ, h′ = L(parent(i)), h = L(i)) ∨
([ a ]h → [ c ]h[ d ]h ∈ R, h = h′, b ∈ {c, d})}.

Let I ⊆ O ×H where I = {(x, h) | x ∈M(i), h = L(i), i ∈ Vµ}, that is,
vertices representing objects in the initial configuration. In the previous
definition, the vertices (yes, skn) and (no, skn) respectively represent
the objects yes and no in the output membrane. If there is a path from
a vertex representing the input to the vertex (yes, skn) then it is clear
that this system is an accepting one. It is worth noting that, unlike
upper-bound proofs for a number of other computational models, the
dependency graph does not model entire configuration sequences, but
rather models only certain aspects of configurations.

9



For the P upper-bound proof [5], the dependency graph was con-
structed in polynomial time, we now show that it can be constructed in
FAC0.

LEMMA 1. Given an encoding of a membrane system 〈Π〉, its depen-
dency graph GΠ is constructable in FAC0.

Proof. We provide a constant time CRAM algorithm that when
given an encoding of a membrane system constructs the encoding of
the dependency graph for that system. By definition every membrane
in the system has a unique label at the initial timestep.

The CRAM algorithm assumes that the structure µ of the membrane
system is encoded as an adjacency matrix M|H|×|H|. It also assumes
that the set of rules R are arranged in a matrix with |R| rows (one
for each rule) and m + 5 columns where m is the size of the largest
multiset in a rule of type (a) in R (one row for each multiset symbol).
Each rule is prefixed with its type ((a), (b), etc.), stored in column 1.
From the set of rules R and the membrane structure µ, the CRAM
algorithm computes an adjacency matrix Gn×n, where n = |O||H|,
that encodes the dependency graph. The CRAM uses binary strings to
encode matrix indices, in the usual way. The objects a, b ∈ {1, 2, . . . , |O|}
are written in binary, as is h ∈ {1, 2, . . . , |H|}. We define 〈a, h〉 =
shift(a, dlog2(|H| + 1)e) + h, where dlog2(|H| + 1)e is computed via
masking of the binary string that encodes |H|.

The CRAM has a processor for each entry in the rules matrix. The
first column of processors check the type of the rule stored in their row,
then each processor in the row looks at its designated part of the rule.
If the rule is of type:

(a) One processor reads the triggering object a, another reads the
membrane label h. There are m processors that each read an object
in the multiset u (or blank). In the next timestep, each processor
that read an object type b ∈ u combines this with a, h, |H| and
then sets entry g〈a,h〉,〈b,h〉 = 1 in G.

(b) One processor reads the triggering object a, another reads the
membrane label h, and a third the resulting object b. The processor
that read the label h writes it to a global register. Another |H|
processors check, in parallel, each entry of row h of M for a 1, the
processor that finds mh,j = 1 has j as part of its processor ID, and
writes j to a global register. In the next timestep the processor that
read object type b sets g〈a,j〉〈b,h〉 = 1 in the adjacency matrix of G.

(c) One processor reads the triggering object a, another the membrane
label h, and a third the resulting object b. The parent j of mem-
brane h is found using a similar method as for type (b) rules. In the
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next timestep the processor that read object b sets g〈a,h〉〈b,j〉 = 1 in
the adjacency matrix of G.

(e) One processor reads the triggering object a, another the membrane
label h, another the resulting object b, and a fourth reads the
resulting object c. In the next timestep the processors that read
objects b and c respectively set g〈a,h〉〈b,h〉 = 1 and g〈a,h〉〈c,h〉 = 1 in
the adjacency matrix of G.

(f) The algorithm ignores the rule.

Thus a dependency graph is constructable from a membrane system in
constant time by a CRAM, and hence in FAC0. 2

In the previous P upper-bound result [5] a polynomial time algorithm
was given to find a path from the (yes, skn) vertex back to a vertex
in I. We now observe that this problem is reducible to STCON, the
canonical NL-complete problem.

DEFINITION 7. (s-t connectivity (STCON)).
Instance: A directed acyclic graph with vertices V , edges E, and vertices
s, t ∈ V .
Problem: Given G = (V,E, s, t), is there a directed path from s to t?

THEOREM 1. (AC0)–PMC∗AM0
−d
⊆ NL

Proof. Given a membrane system Π of the type in the statement, we
use Lemma 1 to convert it (in FAC0) to a dependency graph G. This
graph has the property that there is a path from one of the vertices in
I to (yes, skn) iff the system Π accepts. A constant time CRAM adds
extra nodes s, t to G and new edges from s to each vertex in I and
from (yes, skn) to t. This yields an instance of STCON that has the
property that there is a path from s to t iff the system Π accepts. 2

This holds for both AC0 and L-uniformity, as well as for both uniform
and semi-uniform families of membrane systems without dissolution.

4. NL lower-bound for semi-uniform active membranes
without dissolution

In this section we give a membrane system that solves STCON in a
semi-uniform manner. The algorithm works by representing edges in the
problem instance graph as object evolution rules. For example, edges
(s, b), (s, c), (s, d) are represented as the rule [ s → b, c, d ]. There is only
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one membrane, the skin, which serves as the output membrane. The
system is initialised with an s object (the start vertex) which is then
acted upon by the rules. In this manner the presence of an object in
a configuration indicates that the system is currently at this vertex
while following (or simulating) each different path through the graph in
parallel. If the t object is ever evolved the system evolves a yes object.

THEOREM 2. NL ⊆ (AC0)–PMC∗AM0
−d

Proof. An instance of the problem STCON is a tuple (V,E, s, t). We
define a function h(x), computable in FAC0, that maps an instance x
of STCON to the membrane system Πx.

Πx = (O = {yes, no} ∪ {ci | 0 ≤ i ≤ |V |+ 1} ∪ V,
({0}, ∅, 0),

M = {(0, {s, c|V |+1}),
H = {skn},
L = {(0, skn)},
R = RE ∪RY ∪RC ∪RD).

The initial configuration contains only a single membrane which
contains the object representing the start vertex s.

The evolution rules come directly from the edges of the input graph.
If vertex u has edges to vertices v1, . . . , vi then we encode them as a
single type (a) rule:

RE = {[u → U ]skn | u ∈ V,U = {v ∈ V | (u, v) ∈ E}}

Since the rules directly represent the edges in the graph, the object
s produces the object t in at most |V | − 1 timesteps iff t is reachable
from s. The object t then becomes the yes object indicating that a
path from s to t exists and the computation is an accepting one.

RY = {[ t → yes ]skn}

The rules provided so far are sufficient for the family to accept
instances of STCON, however a family of recogniser membrane systems
should also reject non-instances of a problem. Since NL = coNL [6, 16]
these systems can also recognise coNL-complete problems. To simplify
our construction of a system that both accepts and rejects inputs we
generalise the definition of a recogniser membrane system in a way
that does not change the class PMC∗AM0

−d
under AC0 reductions [8].

We relax condition 3 in Definition 2 so that a single computation may
produce both a yes and a no object (we consider the first one produced
to be the answer).
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Proceeding with this generalised definition we add a counter that
counts down in parallel with the above steps.

RC = {[ ci → ci−1 ]skn | i ∈ {1, 2, . . . , |V |+ 1}}

Since the longest acyclic path in the graph is |V |−1 nodes long, any yes

object evolvable by the system appears before timestep |V |. In timestep
|V |+ 1 the counter evolves a no object, if no yes objects were produced
before this time, then this no objects signifies a rejecting computation.

RD = {[ c0 → no ]skn}

The function h writes out members of this family and is easily
computable in FL. Moreover, each member of the family is constructable
by a constant time CRAM and so in FAC0, we give the details of a
CRAM algorithm to convert a group of edges leaving the same node,
for example (s, b), (s, c), (s, d), into a single rule [ s → b, c, d ].

The CRAM takes an encoding of the graph G as a binary adjacency
matrix and outputs the set of rules for the membrane system. The
output registers of the CRAM are initially all blank (set to the symbol
“ ”) and hold up to |O| different rules in rows each using |O|+5 columns.
One processor reads each element of the n× n adjacency matrix and
checks if its element ga,b = 1. If it is 1 then it writes out “[ a → ” in
the first 3 columns of the ath row, the object b at the bth column, and
“ ]skn” in the last column. (If multiple processors try to write the same
information to the same register, it does not matter which succeeds.)
For example, the edges {(c, e), (a, d), (c, d), (a, b), (a, f), (c, f)} become
the rules

[ a → b d f ]skn , , [ c → def ]skn.

2

Note that in the previous proof we encode the edges of the graph as rules,
rather than objects. Therefore our algorithm is semi-uniform as we
require a different membrane system for each unique problem instance.
In the membrane computing framework, for uniform membrane systems,
inputs must be specified (encoded) as objects. It is also interesting to
note that our solution uses only type (a) object evolution rules.

By combining Theorems 1 and 2 we get an NL characterisation for
semi-uniform families.

COROLLARY 1. NL = (AC0)–PMC∗AM0
−d
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5. P lower-bound for semi-uniform families of active
membrane systems with dissolving rules

So far we have seen that by tightening the uniformity condition from
P to AC0 we lower the power of some models from P down to NL. In
this section we show that this does not happen for all models that solve
any problem in P. More precisely we give an AC0-semi-uniform family
of polynomial time membrane systems with dissolution rules that solves
AGAP, the P-complete [4] analogue of STCON.

PROBLEM 1. (Alternating Graph Accessibility Problem (AGAP) [4]).
Instance: A directed acyclic graph with vertices V , edges E, a set
A ⊆ V of universal vertices (V \A are existential vertices), and s, t ∈ V .
Problem: Given G = (V,E,A, s, t), does apath(s, t) hold?

The function apath(u, v) holds iff
• u = v or
• u is existential (that is u ∈ V \A) and there exists w ∈ V with

(u,w) ∈ E and apath(w, v) holds, or
• u is universal (that is u ∈ A) and for all w ∈ V with (u,w) ∈ E,

apath(w, v) holds.

THEOREM 3. P ⊆ (AC0)–PMC∗AM0
+d

The remainder of this section consists of an AC0-semi-uniform family
of membrane systems ΠAGAP such that for each G = (V,E,A, s, t) there
exists a membrane system ΠG ∈ ΠAGAP that accepts iff G ∈ AGAP. To
simplify the proof, we assume that the graph G has an extra existential
vertex σ ∈ V \A and an extra edge (σ, s) ∈ E, and that s has no other
incoming edges. It is not difficult to see that AGAP remains P-complete
under this assumption.

Let m = |V |. We also assume a total ordering ≤ on V when defining
the membrane structure Eµ. We let σ = V [0] be the first element in
the ordering, s = V [1] be the second element, and V [m− 1] be the last
element. (Note that many rules begin numbering from 1 not 0). Let
V≤w = {V [0], V [1], . . . , w} where w ∈ V , and let V>w = V \ V≤w.

14



ΠG = (O = {〈ui, vi+1〉 | u, v ∈ V, 0 ≤ i < m} ∪
{〈ui, vi+1〉′ | u, v ∈ V, 0 ≤ i < m} ∪
{〈ui, vi+1〉N | u, v ∈ V, 0 ≤ i < m} ∪
{〈ui, vi+1〉Y | u, v ∈ V, 0 ≤ i < m} ∪
{ci | 0 ≤ i < m} ∪ {di | 0 ≤ i ≤ 2} ∪
{uY

i , u
YW
i , uN

i , u
NW
i | u ∈ V, 0 ≤ i < m},

(Vµ = {ui, ue
i | u ∈ V \{σ}, 1 ≤ i < m} ∪ {in, skn, fin},

Eµ = {(V [u]ei , V [u]i) | 1 ≤ u < m, 1 ≤ i < m} ∪
{(V [u− 1]i, V [u]ei ) | 1 ≤ u < m, 1 ≤ i < m} ∪
{(V [m− 1]i−1, V [1]ei ) | 2 ≤ i < m} ∪
{(fin, V [1]e1), (skn, fin), (V [m− 1]m−1, in)},

skn),

M = {(in, {〈σ0, s1〉′, cm−1})},
H = {ui, ue

i | u ∈ V \{σ}, 1 ≤ i < m} ∪ {in, skn,fin},
L = {(ue

i , u
e
i ) | u ∈ V \{σ}, 1 ≤ i < m} ∪

{(ui, ui) | u ∈ V \{σ}, 1 ≤ i < m} ∪
{(in, in), (skn, skn), (fin,fin)},

R = RF ∪RSB ∪RS∀ ∪RSC ∪RS∃ ∪RSE)

where

RF = {[ 〈ui, vi+1〉′ → 〈ui, vi+1〉,
{
〈vi+1, wi+2〉′ | (v, w) ∈ E

}
]in (F1)

for all (u, v) ∈ E and 0 ≤ i ≤ m− 2} ∪
{[ cj → cj−1 ]in | 1 ≤ j ≤ m} ∪ (F2)

{[ c0 ]in → d2} (F3)

RSB = {[ 〈ui−1, ti〉 ]ti → uY
i−1 | u ∈ V \{t}, 1 ≤ i < m} ∪ (S4)

{[ 〈ui−1, vi〉N → uN
i−1 ]ve

i
| u, v ∈ V \{t}, 1 < i < m} ∪ (S5)

{[ 〈ui−1, vi〉Y → uY
i−1 ]ve

i
| u, v ∈ V \{t}, 1 < i < m} ∪ (S6)

{[ 〈ui−1, vi〉Y → 〈ui−1, vi〉N ]vi | u, v ∈ V \{t}, 1 < i < m}
(S7)
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RS∀ = {[ 〈ui−1, vi〉 → 〈ui−1, vi〉N ]vi such that (S8)

u ∈ V \{t}, v ∈ A\{σ, t}, 1 < i < m}∪
{[〈ui−1, vi〉N → 〈ui−1, vi〉Y]vi such that (S9)

u ∈ V \{t}, v ∈ A\{σ, t}, 1 < i < m} ∪
{[ vY

i → vYW
i ]vi | v ∈ A\{σ, t}, 1 ≤ i < m} ∪ (S10)

{[ vN
i ]vi → λ | v ∈ A\{σ, t}, 1 ≤ i < m} ∪ (S11)

{[ vYW
i ]vi → λ | v ∈ A\{σ, t}, 1 ≤ i < m} (S12)

RSC = {[ dk → dk−1 ]vi | k ∈ {1, 2}, v ∈ V \{σ}, 1 ≤ i < m} ∪ (S13)

{[ d0 ]vi → d0 | v ∈ V \{σ}, 1 ≤ i < m} ∪ (S14)

{[ dk ]ve
i
→ d2 | k ∈ {0, 1}, v ∈ V \{σ}, 1 ≤ i < m} (S15)

RS∃ = {[〈ui−1, vi〉 → 〈ui−1, vi〉Y]vi such that (S16)

u ∈ V \{t}, v ∈ V \(A ∪ {σ, t}), 1 < i < m} ∪
{[ vN

i → vNW
i ]vi | v ∈ V \(A ∪ {σ, t}), 1 ≤ i < m} ∪ (S17)

{[ vY
i ]vi → λ | v ∈ V \(A ∪ {σ, t}), 1 ≤ i < m} ∪ (S18)

{[ vNW
i ]vi → λ | v ∈ V \(A ∪ {σ, t}), 1 ≤ i < m} ∪ (S19)

RSE = {[σN
0 → σNW

0 ]fin} ∪ (S20)

{[σY
0 ]fin → yes} ∪ (S21)

{[σNW
0 ]fin → no} (S22)

LEMMA 2. The function h : Σ∗ → ΠAGAP is in FAC0

Proof sketch. The input word G is interpreted as an instance of
AGAP encoded as: a binary adjacency matrix of edges E, a binary
|V |-vector that encodes the universal vertices A, and vertices s and t.

The system ΠG ∈ ΠAGAP has O(|V |3) distinct object types, O(|V |2)
membranes and O(|V |3) different rules.

We describe how the Rules (F1) are computed by a CRAM in constant
time (using similar techniques as used in the proof of Theorem 2). The
rules are specified for values of i from 0 to |V | − 1, for each i a group
of processors work in parallel as follows. For each entry eu,v = 1 in the
edge adjacency matrix of G, a processor writes the first part of the
rule “[ 〈ui, vi+1〉′ → 〈ui, vi+1〉,” and the closing part “ ]in” (where i is
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in V [3]3 V [3]e3 V [2]3 V [2]e3 V [1]3 V [1]e3

V [3]2 V [3]e2 V [2]2 V [2]e2 V [1]2 V [1]e2

V [3]1 V [3]e1 V [2]1 V [2]e1 V [1]1 V [1]e1 fin skn

Figure 2. The membrane structure of the semi-uniform family to solve AGAP, in
this case there are m = |V | = 4 vertices. The direction of the arrows (→) indicates
the movement of the objects through the structure by dissolving membranes. The
root of the membrane structure is the “skin”.

the particular number for this group of processors). Then, in parallel,
|V | processors check row v of the adjacency matrix, if a processor reads
a 1 in location ev,w then it writes out 〈vi+1, wi+2〉′ to the w part of its
output registers (see the proof of Theorem 2).

The other rules are computed (in parallel, for all i) from the number
of vertices |V |, but with an additional check to see if the vertex is in
the set A or equal to σ or t. Likewise the membrane structure is easily
computable using a constant time CRAM.

The rules of each member of the membrane system family are specific
for each problem instance so the solution is semi-uniform. The function
h maps instances of G = (V,E,A, s, t) to the membrane system ΠG

using only constant time on a CRAM and so h is in FAC0. 2

5.1. Proof of correctness

The membrane systems of the family ΠAGAP operate in two distinct
phases, the output of the first phase acts as input to the second phase.
The first phase records all paths through the graph and operates in
a single membrane. The second phase uses these paths to evaluate
apath(s, t).

We define the distance function DG : V ×V → P(N), where DG(σ, u)
is the set of lengths of all directed paths from σ to u in the directed
graph G.

5.1.1. First phase
The first phase of a system ΠG’s computation produces objects which
represent every (and only those) edge(s) in the graph G reachable
from σ, as well as the distance(s) of each vertex from σ on all paths
from σ.

This phase of the computation takes place in a single membrane
labeled “in”, the most deeply nested membrane (see Figure 2). This
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phase begins with an object representing the edge (σ, s) and a counter
object cm. The counter cm is decremented by Rules (F2) and dissolves
the “in” membrane when it reaches c0 via Rule (F3). While the counter
is decrementing, Rules (F1) are acting on the objects representing
edges, “following” all possible paths through the graph in parallel. Note
that if there are different paths through the graph involving the same
vertices, objects representing the same edges with different distances are
generated. When the counter reaches c0 it dissolves the membrane “in”.
This marks the end of the first phase of the algorithm and moves the
computation to the second phase which is described in Section 5.1.2.

LEMMA 3. Given a membrane system ΠG, where G = (V,E,A, s, t),
then in ≤ |V | − 1 timesteps Rules (F1) produce the set of objects
{〈ui, vi+1〉 | (u, v) ∈ E and i ∈ DG(σ, u)}.

Proof. We prove by induction on i. The base case is i = 0. We
show that, after the first timestep, Rules (F1) have evolved (a) the
object 〈σ0, s1〉 and (b) the set of objects {〈s1, v2〉′ | {(σ, s), (s, v)} ⊆
E, 2 ∈ DG(σ, v)}. The membrane “in” in the initial configuration of ΠG

contains the object 〈σ0, s1〉′. Rules (F1) include:[
〈σ0, s1〉′ → 〈σ0, s1〉,

{
〈s1, v2〉′ | ∀v s.t. {(σ, s), (s, v)} ⊆ E

}]
in

After applying these rules, if there are no edges leaving s in the graph G
then only the object 〈σ0, s1〉 is created. Otherwise for each (s, v) ∈ E
a new edge object 〈s1, v2〉′ is evolved. The subscript on s is 1 since
DG(σ, s) = {1} and the subscript(s) on all v is 2 since 2 ∈ DG(σ, v).

For the induction hypothesis we assume that at the end of timestep i,
Rules (F1) have evolved (a) the set of objects {〈uj , vj+1〉 | (u, v) ∈
E, 0 ≤ j ≤ i, j ∈ DG(σ, u)} and (b) the set of objects {〈vi+1, wi+2〉′ |
∀v s.t.{(u, v), (v, w)} ⊆ E, i + 1 ∈ DG(σ, v)}. Assuming these are the
contents of “in” immediately before timestep i + 1, we prove that
immediately after timestep i+ 1 Rules (F1) evolve (a) the set of objects
{〈uj , vj+1〉 | (u, v) ∈ E, 0 ≤ j ≤ i + 1, j ∈ DG(σ, u)} and (b) the set
of objects {〈vi+2, wi+3〉′ | ∀v s.t.{(u, v), (v, w)} ⊆ E, i+ 2 ∈ DG(σ, v)}.
Rules (F1) include:[
〈ui+1, vi+2〉′ → 〈ui+1, vi+2〉,{

〈vi+2, wi+3〉′ | ∀v s.t. {(u, v), (v, w)} ⊆ E
}]

in

If there are no edges leaving v then, when the rules are applied, only
objects 〈ui+1, vi+2〉 are created. Otherwise for each (v, w) ∈ E a new
primed object 〈vi+2, wi+3〉′ is evolved. The subscripts on vertices v and
w come from the fact that i + 2 ∈ DG(σ, v) and i + 3 ∈ DG(σ,w). G
is acyclic, hence the longest path length from σ is of length < |V |.
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After timestep |V | − 1 the rules have produced the set of objects
{〈uj , vj+1〉 | (u, v) ∈ E, 0 ≤ j < |V |, j ∈ DG(σ, u)}. 2

5.1.2. Second phase
The second phase of the computation begins when the parent of the
membrane “in” contains the objects produced by the first phase.

Roughly speaking, this phase guides the computation along two
nested loops by sequentially dissolving the membrane structure from
the most deeply nested membrane to the skin membrane (see Figure 2).
The outer loop iterates over all path lengths i from |V | − 1 down to 1,
while the inner loop iterates over all vertices v ∈ V \{σ}. Lemma 4 proves
that each each iteration of the inner loop works correctly. Lemma 5
proves that the membrane structure guides the computation so that
the correct solution is always produced.

DEFINITION 8. Let G = (V,E,A, s, t) be an AGAP instance, and
let ΠG ∈ ΠAGAP. We say that vertex w is evaluated by the current
configuration of ΠG for some j ∈ {1, 2, . . . , |V | − 1} if

1. there is a path of length j from vertex σ to vertex w in G (i.e.
j ∈ DG(σ,w)) and

(i) w = t, then the rules produce an object uY
j−1 for all (u, t) ∈ E,

(ii) w 6= t and if apath(w, t) holds, then the rules produce an
object uY

j−1 for all (u,w) ∈ E,

(iii) w 6= t and if apath(w, t) does not hold, then the rules produce
an object uN

j−1 for all (u,w) ∈ E,

2. otherwise, no wY
j nor wN

j objects are produced.

Furthermore, the evaluation happens in the membrane labeled wj and
its parent we

j (its “evaluation” membrane) in the current configuration
of ΠG. (When evaluating w at distance j some waste objects of the form
wYW
j or wNW

j may also be produced.)
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DEFINITION 9. We define CG(v, i) to be the set

{〈uj−1, wj〉 | (u,w) ∈ E, u 6= σ, j ∈ DG(σ,w), j < i} ∪
{〈ui−1, wi〉 | (u,w) ∈ E,w ∈ V≤v, u 6= σ, i ∈ DG(σ,w)} ∪
{wY

i | w ∈ V≤v, w 6= σ, i ∈ DG(σ,w), (w, y) ∈ E, apath(y, t) holds} ∪
{wN

i | w ∈ V≤v, w 6= σ, i ∈ DG(σ,w), (w, y) ∈ E, apath(y, t) does not hold} ∪
{wY

i−1 | w ∈ V>v, i− 1 ∈ DG(σ,w), (w, y) ∈ E, apath(y, t) holds} ∪
{wN

i−1 | w ∈ V>v, i− 1 ∈ DG(σ,w), (w, y) ∈ E, apath(y, t) does not hold} ∪
W, where W ⊆ {yYW

i | y ∈ V>v} ∪ {wYW
j | w ∈ V, j > i} ∪

{yNW
i | y ∈ V>v} ∪ {wNW

j | w ∈ V, j > i}

In our proofs, CG(v, i) encodes G at an intermediary point in the
evaluation of apath(σ, t). More precisely, given CG(v, i), the following
vertices have been evaluated: (a) all vertices w ∈ V such that there is
some j > i where j ∈ DG(σ,w) and (b) all vertices w ∈ V≥v such that
i ∈ DG(σ,w). The set W is a subset of the possible “waste” objects
which are generated by ΠG (proof of Lemma 4) as a side product.

LEMMA 4. Let membrane system ΠG ∈ ΠAGAP be in a configuration
where the membrane with label vi (v ∈ V \{σ}, i ∈ DG(σ, v)) contains
the set of objects CG(v, i)∪{d2}, and nothing else. Then, in ≤ 4 timesteps,
ΠG evaluates v at i according to Definition 8. ΠG does this by replacing
each 〈ui−1, vi〉 object with the object uY

i−1 if apath(v, t) holds and uN
i−1 if

apath(v, t) does not hold. The membrane vi and its parent “evaluation”
membrane ve

i are dissolved in the process.
Proof. The proof is by analysis of the rules of ΠG. Let v ∈ V \{σ}.
Case 1: v is universal (v ∈ A). In this case, the system uses the

fact that if there exists (v, y) ∈ E such that apath(y, t) does not hold,
then apath(v, t) does not hold. The rules operate in ≤ 4 timesteps as
follows.

Start: In membrane with label vi where, v ∈ A.
if v = t and there is an object 〈ui−1, ti〉 to trigger Rule (S4) then

the membrane ti is dissolved in timestep 1 evolving object uY
i−1. The

counter decrements from d2 to d1 by Rule (S13). In timestep 2 the
object d1 dissolves the “evaluation” membrane ve

i via Rule (S15).
End: apath(t, t) where i ∈ DG(σ, t) has been positively evaluated
in 2 timesteps, the object uY

i−1 is produced.
else if v = t and there are no objects 〈ui−1, ti〉 for Rule (S4) then

any tNi or tYWi objects dissolve ti within 2 timesteps. Otherwise, in
timestep 2 when the decrementing counter reaches d0 by Rule (S13),
it dissolves the membrane ti via Rule (S14). In the next timestep
the counter dissolves “evaluation” membrane ve

i via Rule (S15).
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End: i /∈ DG(σ, t) so apath(t, t) has not been evaluated, no new
objects are produced and the computation continues.

else if v 6= t then
In timestep 1, any edge objects 〈ui−1, vi〉 evolve to 〈ui−1, vi〉N via
Rule (S8). Any vY

i objects wait by evolving to vYW
i via Rule (S10).

The counter object decrements from d2 to d1 by Rule (S13).
if there is a vN

i object to dissolve vi via Rule (S11) then
apath(v, t) does not hold in the graph. The objects are now

in the “evaluation” membrane ve
i where any 〈ui−1, vi〉N objects

evolve to uN
i−1 objects via Rule (S5), in timestep 2. The counter

d1 dissolves the “evaluation” membrane ve
i via Rule (S15).

End: apath(v, t) on paths of length i ∈ DG(σ, v) has been nega-
tively evaluated in 2 timesteps, a uN

i−1 object is evolved for each
(u, v) ∈ E.

else if there is no vN
i object to dissolve vi via Rule (S11) then

in timestep 2 the objects remain in membrane vi where any
〈ui−1, vi〉N objects evolve to 〈ui−1, vi〉Y via Rule (S9).
The counter object decrements from d1 to d0 by Rule (S13).
if there is a vYW

i object to dissolve vi via Rule (S12) then
apath(v, t) holds in the graph. In timestep 3 the objects are

now in the “evaluation” membrane ve
i where 〈ui−1, vi〉Y objects

become uY
i−1 objects via Rule (S6). The counter d0 dissolves

the in the “evaluation” membrane ve
i via Rule (S15).

End: apath(v, t) where i ∈ DG(σ, v) has been positively eval-
uated in 3 timesteps, a uY

i−1 object is produced for every
(u, v) ∈ E.

else if there was no vYW
i to dissolve vi via Rule (S12) then

no edges leave v in the input graph so apath(v, t) does not

hold. In timestep 3 any 〈ui−1, vi〉Y objects evolve to 〈ui−1, vi〉N
objects via (S7). The counter d0 dissolves the membrane vi
via Rule (S14) and the objects move into the “evaluation”
membrane ve

i .

if each 〈ui−1, vi〉N object evolves to uN
i−1 via Rule (S5) then

in timestep 4 d0 dissolves the “evaluation” membrane ve
i via

Rule (S15).
End: apath(v, t) has been negatively evaluated in 4 timesteps
since v is a sink node in G, a uN

i−1 object is produced for
each (u, v) ∈ E.

else if there were no 〈ui−1, vi〉N objects for Rule (S5) then
in timestep 4 d0 dissolves the “evaluation” membrane ve

i via
Rule (S15).
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End: i /∈ DG(σ, v) so apath(v, t) has not been evaluated, no
new objects are produced and the computation continues.

end if
end if

end if
end if

Case 2: v is existential (v ∈ V \(A ∪ {σ})). In this case, if there
exists (v, y) ∈ E where apath(y, t) holds, then apath(v, t) holds. Here
the algorithm describing the action of the rules is very similar to the one
above. The changes are to swap Rules (S8), (S10), (S11), (S12), with
the existential Rules (S16), (S17), (S18), (S19), and in the sentences
mentioning these rules, swap the roles of the objects tagged with “Y”
and “N”. (Note that in the existential case, no equivalent of Rule (S9) is

needed, the edge objects are already in the form 〈ui−1, vi〉N in timestep 2
by Rule (S7).)

Thus, assuming that membrane vi (v ∈ V \{σ}, i ∈ DG(σ, v)) is the
most deeply nested membrane in µ and contains the objects d2 and
CG(v, i) then the rules of ΠG (in at most 4 timesteps) replace each
〈ui−1, vi〉 with a uY

i−1 object if apath(v, t) holds and uN
i−1 if apath(v, t)

does not hold, in the process the membrane vi and its parent, the
“evaluation” membrane ve

i , are dissolved. Thus ΠG evaluates vertex v at
distance i, according to Definition 8. 2

LEMMA 5. If membrane system ΠG contains the objects produced by
the first phase (Lemma 3) in the parent of the membrane labeled “in”
then within 4(m− 1)2 timesteps ΠG the “fin” membrane contains the
object σY

0 if apath(s, t) holds and the object σN
0 if apath(s, t) does not

hold.
Proof. We prove by induction on the set of membranes, ordered by

the membrane structure µ of ΠG, beginning at V [m− 1]m−1 and ending
at s1 = V [1]1 (see Figure 2).

The base case is given by the membrane p of label V [m− 1]m−1. This
membrane is the parent of “in” and, immediately after “in” is dissolved,
p contains the set of objects CG(V [m−1],m−1) which were generated by
the first phase (see Lemma 3). Then, as per Lemma 4, ΠG replaces the
set of objects of the form {〈um−2, V [m− 1]m−1〉 | (u, V [m− 1]) ∈ E} in
CG(V [m−1],m−1) with either an equal number of uY

m−2 objects, or else

with an equal number of uN
m−2 objects in ≤ 4 timesteps (the V [m− 1]Yi

and V [m− 1]Ni objects are removed or become waste objects). This
modification of CG(V [m− 1],m− 1) gives the set CG(V [m− 2],m− 1)
(see Definition 9). While the rules of ΠG are modifying the set of objects,
they also dissolve membrane p (of label V [m− 1]m−1) and its parent
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p − 1 (of label V [m− 1]em−1), placing the set CG(V [m − 2],m − 1) in
membrane p− 2, which has label V [m− 2]m−1. This completes the base
case.

For the induction hypothesis, assume that the set of objects CG(V [z], i)
is in membrane p of label V [z]i. As per Lemma 4, ΠG replaces the set of
objects of the form {〈ui−1, V [z]i〉 | (u, V [z]) ∈ E} in the set CG(V [z], i)
with either an equal number of uY

i−1 objects, or else with an equal

number of uN
i−1 objects in ≤ 4 timesteps (the V [z]Yi and V [z]Ni objects

are removed or become waste objects). Then, we are in one of two cases.
Case 1: If z > 1 then this modification of CG(V [z], i) gives the set

CG(V [z − 1], i) (see Definition 9). While the rules of ΠG are modifying
the set of objects, they also dissolve membrane p (with label V [z]i),
and its parent p− 1 (with label V [z]ei ), placing the set CG(V [z − 1], i)
in membrane p− 2, which has label V [z − 1]i.

Case 2: If z = 1 then this modification of CG(V [1], i) gives the set
CG(V [m− 1], i− 1) (see Definition 9). This is because the set CG(V [1], i)
must have moved up the membrane structure µ through each membrane
V [y]i for y ∈ {m− 1,m− 2, . . . , 1} to arrive in membrane V [1]i. In each
membrane V [y]i the rules of ΠG operate via Lemma 4 to remove all
objects in the set {〈ui−1, V [y]i〉 | (u, V [y]) ∈ E} and replace them with
either uY

i−1 objects or uN
i−1 objects (the V [y]Yi and V [y]Ni objects are

also removed or become waste objects). This encodes that all vertices
at distance i have now been evaluated, and the object set is ready for
evaluation at distance i− 1. While the rules of ΠG are modifying the
set of objects, they also dissolve membrane p (with label V [1]i), and
its parent p− 1 (with label V [1]ei ), placing the set CG(V [m− 1], i− 1)
in membrane p− 2, which has label V [m− 1]i−1 (see Figure 2). This
completes the inductive argument.

By the above inductive argument, system ΠG eventually reaches a
configuration where the membrane of label s1 = V [1]1 contains the set
of objects CG(s, 1) = {sY

1 | (s, u) ∈ E where apath(u, t) holds} ∪ {sN
1 |

(s, u) ∈ E where apath(u, t) does not hold} ∪ {〈σ0, s1〉}. The rules of
ΠG operate on the set CG(s, 1) as in Lemma 4. The object 〈σ0, s1〉 is
replaced with an object σY

0 if apath(s, t) holds or is replaced by an object
σN

0 if apath(s, t) does not hold. While the rules of ΠG are modifying
the set of objects (Lemma 4), they also dissolve the membrane with
label s1, and its parent with label se

1, placing the object σY
0 or σN

0 into
membrane with label “fin”.

At this point in the computation after 4(n − 1)2 timesteps the
rules of ΠG have used the objects produced in the first phase of the
computation to evolve the object σY

0 if apath(s, t) holds and the object
σN

0 if apath(s, t) does not hold. 2
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Proof of Theorem 3. Lemma 5 shows that the object σY
0 is produced

if apath(s, t) holds or else the object σN
0 is produced if apath(s, t) does

not hold.
All that remains is to show that ΠG correctly outputs either yes

in the presence of σY
0 , or no in the absence of σY

0 . Rules (S20)–(S22)
achieve this in ≤ 2 timesteps in the following straightforward manner.
After Lemma 5, any σY

0 or σN
0 objects are contained in the membrane

of label “fin”. All σN
0 objects evolve to σNW

0 objects in step 1. In the
same step, the existence of a σY

0 object dissolves the membrane of label
“fin”, and places a yes in the output membrane. However, if there are
no σY

0 objects, then, in step 2, a σNW
0 object dissolves “fin”, placing no

in the output membrane. In either case, no more rules are applicable
and the computation halts.

This completes the proof that the family ΠAGAP recognises the
P-complete language AGAP, in polynomial time. 2

COROLLARY 2. AC0 semi-uniform families of active membrane sys-
tems without charges using only evolution and dissolution rules charac-
terise P.

Proof. This follows from Theorem 3 and the known P upper-bound
on active membrane systems without division [17]. 2

6. AC0-uniformity and known PSPACE results

P-uniform families of active membrane systems (without charges) using
non-elementary division (rules of type (f)) are known to characterise
PSPACE [1, 15]. Clearly, the PSPACE upper-bound [15] is unaffected
if we restrict to AC0-uniformity.

The lower-bound [1] is given by a P-uniform family of membrane
systems that recognise instances of QSAT [10] in polynomial time. We
sketch how this result can be modified so that it holds for Definition 3
using L-uniformity and, with a suitable restriction on the problem
encoding, AC0-uniformity.

We use a restriction of QSAT, which we show is PSPACE-complete,
where the number of variables n is even2, and equal to the number
of clauses m (i.e. n = m = 2i, i ∈ N). Given an instance of QSAT in
conjunctive normal form (CNF) we reduce to an instance where n = m =
2i as follows. If n < m we add m− n “junk” variables {xn+1, . . . , xm}

2 The original solution requires an even number of variables. Most reasonable
encodings represent variables such that it is possible check that there is an even
number of them in AC0 (e.g. in unary).
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to the instance. These new variables are not listed in the clauses and so
do not affect the existence of a satisfying solution. If the total number
of variables is now odd then we add another variable xm+1 and the
tautological clause (x1∨¬x1) to ϕ. If n > m we add n−m copies of the
tautological clause (x1 ∨ ¬x1) to ϕ, and ensure the number of variables
and clauses are even as before. The input encoding in [1] (analogous to
the e function in Definition 3) maps the variables in the clauses of the
input instance to objects and is straightforward to compute in FAC0.

In Definition 3 the function f : {1}∗ → Π maps the encoded input
instance length 1|x|, x ∈ Σ∗, to a membrane system in Π. However,
the construction in [1] makes use of both the number of variables and
clauses to compute this mapping. The function f must now compute
the number of variables (which is now equal to the number of clauses)
from the length of its input, an instance of QSAT. The difficulty of
this task is heavily dependent on the chosen encoding scheme, it can be
accomplished in FL for most reasonable encodings and FAC0 for some.

Thus L-uniform families ofAM0 systems using strong non-elementary
division can solve at most PSPACE-complete problems (note that
L ( PSPACE). If a suitable problem encoding scheme is used, the
same result holds for AC0-uniform families of the same type.

7. Discussion

We have introduced AC0-uniformity to membrane systems, and ac-
tive membrane systems in particular. This has allowed us to show
an NL characterisation of semi-uniform systems without dissolution,
an improvement over the previous P upper-bound. We also showed
that a class of systems that was previously known to characterise
P [17] retains its P lower-bound with AC0-semi-uniformity. Also a
previous PSPACE [1, 15] characterisation also remains unchanged
under the tighter uniformity conditions. This leads us to conclude that
tight uniformity conditions, such as AC0-uniformity, allow us to more
accurately study the computing power of our model.

We note that the system in Section 4 that solves the NL-complete
problem STCON uses only evolution rules and that the system in Sec-
tion 5 that solves the P-complete problem AGAP uses only dissolving
and evolution rules. So in this setting, assuming NL ( P, dissolution
rules significantly increase the computational power.
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Núñez and the other members of the Research Group on Natural
Computing at the University of Seville for interesting discussions and for
hosting Niall Murphy while later versions of this article were written. We
would also like to thank Antonio E. Porreca for stimulating discussions
about uniformity and the anonymous reviewers for their rigour in
checking Section 5.

References

1. Alhazov, A. and M. J. Pérez-Jiménez: 2007, ‘Uniform Solution to QSAT Using
Polarizationless Active Membranes’. In: J. Durand-Lose and M. Margenstern
(eds.): Machines, Computations and Universality (MCU), Vol. 4664 of LNCS.
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