
A characterisation of NL using membrane
systems without charges and dissolution

Niall Murphy1 and Damien Woods2

1 Department of Computer Science, National University of Ireland, Maynooth,
Ireland

nmurphy@cs.nuim.ie
2 Department of Computer Science and Artificial Intelligence, University of Seville,

Seville, Spain
d.woods@cs.ucc.ie

Abstract. We apply techniques from complexity theory to a model of
biological cellular membranes known as membrane systems or P-systems.
Like circuits, membrane systems are defined as uniform families. To date,
polynomial time uniformity has been the accepted uniformity notion for
membrane systems. Here, we introduce the idea of using AC0 and L-
uniformities and investigate the computational power of membrane sys-
tems under these tighter conditions. It turns out that the computational
power of some systems is lowered from P to NL, so it seems that our
tighter uniformities are more reasonable for these systems. Interestingly,
other systems that are known to be lower bounded by P are shown to
retain their computational power under the new uniformity conditions.
Similarly, a number of membrane systems that are lower bounded by
PSPACE retain their power under the new uniformity conditions.

1 Introduction

Membrane systems [14] are a model of computation inspired by living cells.
In this paper we explore the computational power of cell division (mitosis) and
dissolution (apoptosis) by investigating a variant of the model called active mem-
branes [13]. An instance of the model consists of a number of (possibly nested)
membranes, or compartments, which themselves contain objects. During a com-
putation, the objects, depending on the compartment they are in, become other
objects or pass through membranes. In the active membrane model it is also
possible for a membrane to completely dissolve, and for a membrane to divide
into two child membranes.

This membrane model can be regarded as a model of parallel computation,
however it has a number of features that make it somewhat unusual when com-
pared to other parallel models. For example, object interactions are nondeter-
ministic so confluence plays an important role, membranes contain multisets of
objects, there are many parameters to the model, etc. In order to clearly see the
power of the model we analyse it from the computational complexity point of
view, the goal being to characterise the model in terms of the set of problems

that it can solve in reasonable time. One can also interpret our results as clas-
sifying the computational complexity of simulating biological phenomena that
are modelled by the membrane systems under consideration.

Another, more specific, motivation is the so-called P-conjecture [15] which
states that recogniser membranes systems with division rules (active membranes),
but without charges, characterise P. On the one hand, it was shown that this
conjecture does not hold for systems with non-elementary division as PSPACE
upper [18] and lower [1] bounds were found for this variant (non-elementary di-
vision is where a membrane containing multiple membranes and objects may be
copied in a single timestep). On the other hand, the P-conjecture was thought to
hold for all active membrane systems without dissolution rules, when Gutiérrez-
Naranjo et al. [7] gave a P upper bound. The corresponding P lower bound
(trivially) came from the fact that the model is defined to be P-uniform.

However, here we argue that the aforementioned P lower bound highlights a
problem with using P-uniformity, as it does not tell us whether this membrane
model itself has (in some sense) the ability to solve all of P in polynomial time,
or if the uniformity condition is providing the power. In this paper we show that
when we use weaker, and more reasonable, uniformity conditions the model does
not in fact have the ability to solve all problems in P (assuming P 6= NL). We
find that with either AC0 or L-uniformity the model characterises NL in the
semi-uniform case, and we give an NL upper bound for the uniform case. We
also show that the PSPACE lower and upper bounds mentioned above still
hold under these restricted uniformity conditions.

Using the notation of membrane systems (defined in Section 2) our upper
bound on L-uniform and L-semi-uniform families of membrane systems can be
stated as follows.

Theorem 1. PMCAM0
−d
⊆ NL

Essentially this theorem states that polynomial time active membrane systems,
without dissolution rules, solve no more than those problems in NL. Despite
the fact that these systems run for polynomial time (and can even create expo-
nentially many objects and membranes), they can not solve all of P (assuming
NL 6= P). This result is illustrated by the bottom four nodes in Figure 1.

The upper bound in Theorem 1 is found by showing that the construction
in [7] can be reduced to an instance of the NL-complete problem s-t-connectivity
(STCON). The full proof appears in Section 3. Next we give a corresponding
lower bound.

Theorem 2. NL ⊆ PMCAM0
−d,−u

To show this lower bound we provide an AC0-semi-uniform membrane family
that solves STCON. The full proof is in Section 4 and the result is illustrated
by the bottom left two nodes in Figure 1. Therefore, in the semi-uniform case
we have a characterisation of NL.

Corollary 1. NL = PMCAM0
−d,−u

2

NL

PSPACE
P

PSPACE
P

NL
?

NL NL
?

PSPACE PSPACE

-d, -ne, -u

+d, -ne, -u +d, -ne, +u

-d, -ne, +u

-d, +ne, -u -d, +ne, +u

+d, +ne, -u +d, +ne, +u

Fig. 1. A diagram showing the currently known upper and lower bounds on the vari-
ations of the model. The top part of a node represents the best known upper bounds,
and the lower part the best known lower bounds. An undivided node represents a
characterisation. Arrows represent inclusions.

We have not yet shown an analogous lower bound result for uniform families. In
Section 4.1 we briefly explore some issues relating to this problem.

So far we have shown that four models, that characterise P when polynomial
time uniformity is used are actually upper bounded by NL when restricted
to be AC0-uniform (or L-uniform). Interestingly, we also show that two other
polynomial time uniform membrane systems that are known [11] to characterise
P actually retain this P characterisation when restricted to be AC0-uniform (or
L-uniform). This result is stated as a P lower bound on membrane systems with
dissolution:

Theorem 3. P ⊆ PMCAM0
+d,+u

The proof appears in Section 5 and is illustrated by the top front two nodes in
Figure 1.

In Section 2.4 we observe that the known PSPACE characterisations (top
two nodes in Figure 1) remain unchanged under AC0-uniformity conditions.

2 Membrane Systems

In this section we define membrane systems and complexity classes. These def-
initions are from Păun [13, 14], and Sośık and Rodŕıguez-Patón [18]. We also
introduce the notion of AC0-uniformity for membrane systems.

2.1 Active membrane systems

Active membranes systems are a class of membrane systems with membrane
division rules. Division rules can either only act on elementary membranes, or else

3

on both elementary and non-elementary membranes. An elementary membrane
is one which does not contain other membranes (a leaf node, in tree terminology).

Definition 1. An active membrane system without charges is a tuple Π =
(O,H, µ,w1, . . . , wm, R) where,

1. m > 1 is the initial number of membranes;
2. O is the alphabet of objects;
3. H is the finite set of labels for the membranes;
4. µ is a membrane structure, consisting of m membranes, labelled with ele-

ments of H;
5. w1, . . . , wm are strings over O, describing the multisets of objects placed in

the m regions of µ.
6. R is a finite set of developmental rules, of the following forms:

(a) [a → u]h,
for h ∈ H, a ∈ O, u ∈ O∗

(b) a[]h → [b]h,
for h ∈ H, a, b ∈ O

(c) [a]h → []h b,
for h ∈ H, a, b ∈ O

(d) [a]h → b,
for h ∈ H, a, b ∈ O

(e) [a]h → [b]h [c]h,
for h ∈ H, a, b, c ∈ O.

(f) [a []h1 []h2 []h3]h0 → [b []h1 []h3]h0 [c []h2 []h3]h0 ,
for h0, h1, h2, h3 ∈ H, a, b, c ∈ O.

These rules are applied according to the following principles:

– All the rules are applied in maximally parallel manner. That is, in one step,
one object of a membrane is used by at most one rule (chosen in a non-
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

– If at the same time a membrane labelled with h is divided by a rule of type
(e) or (f) and there are objects in this membrane which evolve by means
of rules of type (a), then we suppose that first the evolution rules of type
(a) are used, and then the division is produced. This process takes only one
step.

– The rules associated with membranes labelled with h are used for membranes
with that label. At one step, a membrane can be the subject of only one rule
of types (b)-(f).

The environment is an indissoluble membrane that is the ultimate parent of
all other membranes in the system.

4

2.2 Recogniser membrane systems

In this paper we study the language recognising variant of membrane systems
that solves decision problems.

Definition 2. A recogniser membrane system is a membrane system such that
the result of the computation (a solution to the instance) is “yes” if a distin-
guished object yes appears in the environment or “no” if no appears.

Such a membrane system is called deterministic if for each input a unique
sequence of configurations exists. A membrane system is called confluent if it
always halts and, starting from the same initial configuration, it always gives
the same result, either always “yes” or always “no”. Therefore, the following
interpretation holds: given a fixed initial configuration, a confluent membrane
system non-deterministically chooses one from a number of valid configuration
sequences, but all of them must lead to the same result.

2.3 Complexity classes

Here we introduce the notion of AC0-uniformity to membrane systems.
Previous work on the computational complexity of membrane systems used

(Turing machine) polynomial time uniformity [16]. Consider a decision problem
X, i.e. a set of instances X = {x1, x2, . . .} over some finite alphabet such that
to each xi there is an unique answer “yes” or “no”. We say that a family of
membrane systems solves a decision problem if each instance of the problem
is solved by some family member. We denote by |x| = n the length of any
instance x ∈ X. AC0 circuits are DLOGTIME-uniform, polynomial sized (in
input length n), constant depth, circuits with AND, OR, and NOT gates, and
unbounded fanin [4].

Definition 3 (AC0-uniform families of membrane systems). Let D be a
class of membrane systems and let f : N → N be a total function. The class of
problems solved by uniform families of membrane systems of type D in time f ,
denoted by MCD(f), contains all problems X such that:

– There exists an AC0-uniform family of membrane systems,
ΠX = (ΠX(1), ΠX(2), . . .) of type D: that is, there exists an AC0 circuit
family such that on unary input 1n the nth member of the circuit family
constructs ΠX(n). We refer to this circuit family as the family machine.

– There exists an AC0-uniform circuit family such that on input x ∈ X, of
length |x| = n, the nth member of the family encodes x as a multiset of input
objects placed in the distinct input membrane hin. We refer to this circuit
family as the input encoding machine.

– Each ΠX(n) is sound: ΠX(n) starting with an encoded input x of length n
expels out a distinguished object yes if and only if the answer to x is “yes”.

– Each ΠX(n) is confluent: all computations of ΠX(n) with the same input x
of size n give the same result; either always “yes” or else always “no”.

5

– ΠX is f -efficient: ΠX(n) always halts in at most f(n) steps.

Using this definition of AC0-uniform families, we define AC0-semi-uniform
families of membrane systems ΠX = (ΠX(x1); ΠX(x2); . . .) such that there ex-
ists an AC0-uniform circuit family which, on an input x ∈ X of length |x| = n,
constructs membrane system ΠX(x). Here a single circuit family (which we refer
to as the input encoding machine) is used to construct the semi-uniform mem-
brane family, and so the problem instance is encoded using objects, membranes,
and rules. In this case, for each instance of X we have a special membrane system
which therefore does not need a separately constructed input. The resulting class
of problems is denoted by MCD,−u(f). Obviously, MCD(f) ⊆ MCD,−u(f) for
a given class D and a complexity [3] function f .

Logspace, or L, uniform families of membrane systems are defined analo-
gously, where we use two deterministic logspace Turing machines, instead of
the two AC0 circuit families, for the uniformity conditions. Similarly we define
L-semi-uniformity using a logspace Turing machine instead of an AC0 circuit
family.

We define PMCD and PMCD,−u as

PMCD =
⋃
k∈N

MCD(O(nk)), PMCD,−u =
⋃
k∈N

MCD,−u(O(nk)).

In other words, PMCD (and PMCD,−u) is the class of problems solvable by
uniform (respectively semi-uniform) families of membrane systems in polynomial
time. We denote by AM0 the classes of membrane systems with active mem-
branes and no charges. We denote by AM0

−ne the classes of membrane systems
with active membranes and only elementary membrane division and no charges.
We denote by AM0

+ne the classes of membrane systems with active membranes,
and both non-elementary and elementary membrane division and no charges.
We denote by PMCAM0

−d
the classes of problems solvable by uniform families

of membrane systems in polynomial time with no charges and no dissolution
rules.

In this paper we are using DLOGTIME-AC0-uniformity which can be
somewhat cumbersome to analyse, therefore in our proofs we use an AC0 equiv-
alent model called the constant time Concurrent Random Access Machine (con-
stant time CRAM) [2, 8].

Definition 4 (CRAM [8]). A CRAM is a concurrent-read concurrent write
PRAM with a polynomial number of processors. Each processor is able to shift
a word in memory by a polynomial number of bits.

2.4 AC0-uniformity and PSPACE results

Membrane systems with active membranes, without charges, and using non-
elementary division have been shown to characterise PSPACE [1, 18]. For the
lower bound, a P-uniform membrane system is given [1] that solves instances of
QSAT in polynomial time. Clearly, stricter uniformity notions have no affect on

6

the PSPACE upper bound. We now show that the use of AC0-uniformity does
not change this lower bound.

The family machine inputs the numbers n and m representing the number
of variables and clauses of the QSAT instance, and uses them to construct
a polynomial number of objects, rules and membranes. We observe that the
construction in [1] is in AC0: the most complicated aspect involves multiplication
by constants (essentially addition) which is known [9] to be in AC0. Although we
omit the details, it is not difficult to see that a constant time CRAM constructs
the membrane system in constant time from n and m. Similarly, the encoding
of the instance as objects to be placed in the input membrane involves only
addition.

3 NL upper bound on active membranes without
dissolution rules

Previously the upper bound on all active membrane systems without dissolution
was P [7]. As an aside, we remark that this is a very enlightening proof since
it first highlighted the importance of dissolution. Without dissolution, mem-
brane division, even non-elementary division, can be modelled as a special case
of object evolution. It is also worth noting that these systems can create expo-
nential numbers of objects and membranes, yet they can not compute anything
outside P.

Since membrane systems are usually P-uniform, this P upper bound was
considered a characterisation of P. However, having a lower bound of the same
power as the uniformity condition is somewhat unsatisfactory, as it tells us little
about the computing power of the actual membrane system itself. This is because
the input encoding machine (in the uniform and semi-uniform case) takes an
instance of the problem as input, thus if the problem is contained in the set of
problems solvable by the encoder it simply outputs a yes or no object directly.
In this section we show that if we tighten the uniformity condition to be AC0,
or even L, it is possible to decide in NL whether or not the system accepts. We
give an overview rather than the full details.

The proof of the P upper bound in [7] involves the construction of a depen-
dency graph representing all possible computation paths of a membrane system
on an input. The dependency graph for a membrane system Π is a directed
graph GΠ = (VΠ , EΠ). Each vertex a in the graph is a pair a = (v, h) ∈ Γ ×H,
where Γ is the set of objects and H is the set of membrane labels. An edge
connects vertex a to vertex b if there is an evolution rule such that the left hand
side of the rule has the same object-membrane pair as a and the right has an
object-membrane pair matching b.

If we can trace a path from the vertex (yes, env) (indicating an accepting
computation) back to a node representing the input it is clear that this system
must be an accepting one. It is worth noting that, unlike upper bound proofs
for a number of other computational models, the dependency graph does not

7

model entire configuration sequences, but rather models only those membranes
and objects that lead to a yes output.

The original statement of the proof constructed the graph in polynomial time
and a path was found from the accepting node to the start node in polynomial
time. We make the observation that the graph GΠ can be constructed in deter-
ministic logspace. We omit the details, but our claim can be verified by checking
that the construction in [7] can easily be computed using only a fixed number of
binary counters. Also we note that the problem of finding a path from the ac-
cepting vertex to one of the input vertices is actually an instance of MSTCON,
a variation of the NL-complete problem STCON. STCON is also known as
PATH [17] and REACHABILITY [12].

Definition 5 (STCON). Given a directed graph G = (V,E) and vertices s, t ∈
V , is there a directed path in G from s to t?

Definition 6 (MSTCON). Given a directed graph G = (V,E), vertex t ∈ V
and S ⊆ V , is there a directed path in G from any element of S to t?

MSTCON is NL-complete as a logspace machine, or AC0 circuit can add a
new start vertex s′, with edges from s′ to each vertex in S, to give an instance
of STCON.

Since we have shown that the problem of simulating a membrane system
without charges and without dissolution can be encoded as an NL-complete
problem we have proved Theorem 1. The proof holds for both AC0 and L-
uniformity, as well as for both uniform and semi-uniform families of membrane
systems without dissolution.

4 NL lower bound for semi-uniform active membranes
without dissolution

Here we provide a proof of Theorem 2 by giving a membrane system that solves
STCON in a semi-uniform manner.

The algorithm works by representing edges in the problem instance graph as
object evolution rules. There is only one membrane which serves as the input and
output membrane. The system is initialised with an s object in this membrane. If
there are edges from s to any other nodes in the graph then have evolution rules
indicating this. For example edges (s, b), (s, c), (s, d) are represented as the rule
[s→ bcd]. In this manner the presence of an object in a configuration indicates
that the system is currently at this node while following (or simulating) each
different path through the graph in parallel. If the t object is ever evolved the
system outputs a yes object and halts. Otherwise, a no object is output from
the system.

We now give a proof of Theorem 2.

Proof. Each instance of the problem STCON is of the form ((V,E) s, t). We
let n and m be the number of vertices and edges in the graph respectively. We

8

assume an ordering on instances (say by n and then lexicographically). We define
a function f(k), computable in AC0, that maps the kth instance to the following
membrane system Πk.

– The set of labels is {h},
– The initial membrane structure is []h.
– The working objects { yes, no} ∪ {ci | 0 ≤ i ≤ |V |+ 2} ∪ V .
– The initial multiset is

{
c|V |+2, s

}
.

In the input membrane we place the object node given by s.
The evolution rules are as follows. If vertex vi has out degree d ∈ N and we

have d edges {(vi, vj1), (vi, vj2), . . . , (vi, vjd)} then we encode it as a type (a) rule

[vi → ui]h where ui = vj1, vj2, . . . , vjd.

When the object t is evolved we want it to become a yes object and send it out
to the environment.

[t]h → []h yes

We also have a counter that counts down in parallel with the above steps.

[ci → ci−1]h where i ∈ {1, 2, . . . , |V |+ 2}

If we output a yes, this occurs on or before timestep 2n. Therefore, when the
counter reaches zero, there must not have been a yes object, so we output a no
to the environment.

[c0]h → []h no

This family of membrane systems is easily constructed by a logspace Turing
machine. However, if we wish to use AC0-uniformity we need to insist on a
limited out-degree d on all nodes. We can make this restriction without loss of
generality. A CRAM to construct the above family for this restricted version of
STCON will run in d+ 1 time steps. Each processor of the CRAM works with
one edge of the graph. There is a register assigned for each node in the graph.
Each processor writes the source node of its edge to the matching register, this
will be the left hand side of the rule. The processor will continue to write to this
same register in the following timesteps. In the next d time steps the processor
tries to write its destination node to this register. If the register is being used
by another processor, it waits and tries to write again the next time step. Once
it writes its node successfully it stops. The CRAM then outputs the contents of
the registers which are the membrane rules of the system.

Note that we encode the edges of the graph as rules, rather than objects.
In the membrane computing framework, for uniform membrane systems, inputs
must be specified (encoded) as objects. Therefore our algorithm is semi-uniform
as we require a different membrane system for each unique problem instance. ut

9

4.1 Differences between circuit and membrane uniformity

To date we have no lower bound for uniform families of active membrane systems
without dissolution. Our search for such a lower bound has highlighted some
interesting differences between circuit and membrane uniformity.

In circuit complexity we assume a reasonable binary encoding of the input
to the circuit so we only need to consider bounding the complexity of the family
machine which constructs the circuit family. However with uniform families of
active membrane systems we construct our input multiset with an input encod-
ing machine. The family machine that constructs the membrane system Π(n)
takes a unary number n as input, where n is input length, similar to circuit uni-
formity. However the input encoding machine takes the actual input instance,
this potentially allows it to solve the problem.

For example, consider the following membrane system. Its family machine is
DLOGTIME-AC0 but the input encoding machine is NC1. The input encod-
ing machine processes the input in such a way that it becomes trivial to solve
the problem PARITY.

PARITY is the problem of telling whether the number of 1 symbols in the
input word is odd. This problem is known [5] to be outside of AC0, and so AC0

would be a reasonable uniformity condition in this case.
Our family machine takes as input n ∈ N and constructs a set of objects

{odd1i0j , even1i0j | i, j ≥ 0 such that i+ j = n}. Objects yes and no are also
created. A type (a) rule is created mapping every odd object with i “1” symbols
to the even object with i−1 “1” symbols in it. A type (a) rule is created mapping
every even object with i “1” symbols to the odd object with i− 1 “1” symbols
in it. A rule is created from object odd00...0 to yes and from even00...0 to no.

The NC1-input encoding machine rearranges the input word w by moving
all 1 symbols to the left and all 0 symbols to the right, to give w′. Then the
symbol evenw′ is placed in the input membrane. (Note, the complexity of this
problem has been previously analysed [2]).

As the system runs, the initial object evolves alternately between odd and
even until only 0 symbols are left in the subscript, then a yes (or no) is evolved
indicating the input word contained an odd (or even) number of 1 symbols.

It is possible to decide the parity of such preprocessed binary strings with
an AC0 circuit. This indicates that our preprocessing step (the input encoding
machine) was too powerful. Also, it can be noted that for circuits it is open
whether or not P-uniform AC0 = DLOGTIME-AC0, an analogous statement
does not hold for membrane systems. Essentially the use of a P-uniform input
encoding machine allows the system to solve at least the problems in P.

5 P lower bound on uniform families of active membrane
systems with dissolving rules

So far we have seen that by tightening the uniformity condition from P to AC0

we lower the power of some models from P down to NL (see Figure 1). In this

10

section we show that this does not happen for all models with at least P power.
More precisely, we prove Theorem 3 by showing that AC0-uniform, polynomial
time, membrane systems with dissolution are lower bounded by P. Naturally
this result also holds for the semi-uniform case.

Proof. A constant time CRAM encodes an instance of the Circuit Value prob-
lem (CVP) [10] as a PMCAM0

+d,+u
membrane system using the gadget mem-

branes and rules shown in Figure 2. The figure shows AND and OR gadgets:
a NOT gadget can be made with the rules [T]NOT → []NOTF , [F]NOT →
[]NOTT . The resulting membrane system directly solves the instance of CVP in
polynomial time.

AND

t

1
t

0
f

input input

T []t → [T]t
[T]t → λ
F []f → [F]f
[F]f → λ
[1]AND → []ANDT
[0]AND → []ANDF

OR

f

0
f

1
t

input input

F []f → [F]f
[F]f → λ
T []t → [T]t
[T]t → λ
[0]OR → []ORF
[1]OR → []ORT

Fig. 2. AND and OR gadgets which can be nested together to simulate a circuit. Here
“input” is either T , F , or a nested gadget membrane.

To ensure uniformity we have an input membrane (inside the skin membrane)
where the initial input assignments for each variable are placed. For example if
input gate i is true and input gate j is false we would have input objects Ti and
Fj in the input membrane. When the computation starts the truth assignments
descend into the encoded circuit until they reach their appropriate “input gate”
gadget where they start the computation. We simulate multiple fanouts by out-
putting multiple copies of the resulting truth value of each gate. We also give
each gadget a unique label and the output of each gate would be tagged. The
output of a gate moves up through the layers of the membrane system until it
reaches the correct gate according to its tag. ut

6 Future directions

We have introduced AC0 uniform active membrane systems and shown an NL
characterisation of semi-uniform systems without dissolution, this is an improve-

11

ment over the previous P upper bound. Interestingly some existing P [11] and
PSPACE [1, 18] characterisations remain unchanged under the tighter unifor-
mity conditions. This is the first characterisation of an active membrane system
that is not either P or PSPACE. This raises the possibility that other variants
may characterise other complexity classes such as NP or the arguably more
realistic NC hierarchy [6].

We have yet to show a lower bound for uniform active membranes without
dissolution. Perhaps there is a way to further tighten the upper bound, this would
be the first gap between the computing power of the uniform and semi-uniform
versions of an active membrane model.

In Section 4.1 we briefly explore the possibility of having different uniformity
conditions and encoding conditions.

Acknowledgements

Niall Murphy is funded by the Irish Research Council for Science, Engineer-
ing and Technology. Damien Woods is supported by Science Foundation Ireland
grant 04/IN3/1524 and Junta de Andalućıa grant TIC-581. We would like to
thank Mario J. Pérez-Jiménez and Agust́ın Riscos-Núñez and the other mem-
bers of the Research Group on Natural Computing in Seville for interesting
discussions and for spotting an ambiguity in an earlier version of our uniformity
definition.

References

1. A. Alhazov and M. J. Pérez-Jiménez. Uniform solution to QSAT using polar-
izationless active membranes. In J. Durand-Lose and M. Margenstern, editors,
Machines, Computations and Universality (MCU), volume 4664 of LNCS, pages
122–133, Orléans, France, Sept. 2007. Springer.

2. E. Allender and V. Gore. On strong separations from AC0. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 13:21–37, 1993.

3. J. L. Balcázar, J. Diaz, and J. Gabarró. Structural complexity I. Springer-Verlag
New York, Inc., New York, NY, USA, 2nd edition, 1988.

4. D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1.
Journal of Computer and System Sciences, 41(3):274–306, 1990.

5. M. L. Furst, J. B. Saxe, and M. Sipser. Parity, circuits and the polynomial-time
hierarchy. Theory of Computing Systems (formerly Mathematical Systems Theory),
17(1):13–27, 1984.

6. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to parallel computation:P-
completeness Theory. Oxford University Press, New York, Oxford, 1995.

7. M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A. Riscos-Núñez, and F. J. Romero-
Campero. Computational efficiency of dissolution rules in membrane systems.
International Journal of Computer Mathematics, 83(7):593–611, 2006.

8. N. Immerman. Expressibility and parallel complexity. SIAM Journal on Comput-
ing, 18(3):625–638, 1989.

12

9. R. M. Karp and V. Ramachandran. Parallel algorithms for shared memory ma-
chines. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,
volume A, chapter 17, pages 869–941. Elsevier, Amsterdam, 1990.

10. R. E. Ladner. The circuit value problem is log space complete for P. SIGACT
News, 7(1):18–20, 1975.

11. N. Murphy and D. Woods. Active membrane systems without charges and using
only symmetric elementary division characterise P. In Membrane Computing, 8th
International Workshop, WMC 2007 Thessaloniki, Greece, Revised Papers, volume
4860 of LNCS, pages 367–384. Springer-Verlag, 2007.

12. C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1993.
13. G. Păun. P Systems with active membranes: Attacking NP-Complete prob-

lems. Journal of Automata, Languages and Combinatorics, 6(1):75–90, 2001. and
CDMTCS TR 102, Univ. of Auckland, 1999 (www.cs. auckland.ac.nz/CDMTCS).

14. G. Păun. Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
15. G. Păun. Further twenty six open problems in membrane computing. In Proceed-

ings of the Third Brainstorming Week on Membrane Computing, Sevilla (Spain),
January 31st - February 4th, pages 249–262, 2005.

16. M. J. Pérez-Jiménez, A. Romero-Jiménez, and F. Sancho-Caparrini. Complex-
ity classes in models of cellular computing with membranes. Natural Computing,
2(3):265–285, 2003.

17. M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company,
1996.

18. P. Sośık and A. Rodŕıguez-Patón. Membrane computing and complexity the-
ory: A characterization of PSPACE. Journal of Computer and System Sciences,
73(1):137–152, 2007.

13

