
First steps towards linking membrane depth and
the Polynomial Hierarchy

Antonio E. Porreca2 and Niall Murphy1

1 Department of Computer Science, National University of Ireland Maynooth,
Ireland nmurphy@cs.nuim.ie

2 Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi
di Milano-Bicocca, Italy porreca@disco.unimib.it

Abstract. In this paper we take the first steps in studying possible con-
nections between non-elementary division with limited membrane depth
and the levels of the Polynomial Hierarchy. We present a uniform family
with a membrane structure of depth d+1 that solves a problem complete
for level d of the Polynomial Hierarchy.

1 Introduction

Active membrane systems without charges are an extremely interesting group of
models to study from the computational complexity point of view. Forbidding
the use of a single rule type yields dramatic differences in computing power of
these models. For example, it is known that systems with strong non-elementary
division characterise PSPACE [1,14], but when dissolution is forbidden these
systems can solve at most problems in NL in the AC0-semi-uniform case [7], and
at most AC0 in the AC0-uniform case [8]. Since AC0 (NL (PSPACE it seems
these rules somehow capture different aspects of computation.

In this report we present our first step towards a better understanding of the
difference between P and PSPACE in terms of membrane systems. We suspect
that the depth of a membrane system combined with non-elementary division is
the key to this difference. Non-elementary division an operation where a mem-
brane divides and all child membranes (and their child membranes etc.) get
copied. There are two varieties of non-elementary division, “strong” which is
triggered by membranes, and “weak” which is triggered by objects. (The labels
“weak” and “strong” have nothing to do with the power of these rules.) Elemen-
tary division is where division is only permitted on membranes that do not have
child membranes, and can be thought of as non-elementary division on structure
of depth of 0.

– Systems with strong non-elementary division and polynomial membrane
depth are known to characterise PSPACE [1,14].

– Systems with weak non-elementary division and polynomial depth can solve
at least all of NP ∪ coNP [3].

– Systems with elementary division (non-elementary division on depth 0) are
believed to characterise P (see [6,16] for some partial results, this is an open
problem known as the P-conjecture [5,12]).

This has lead us to an intriguing hypothesis: that by using non-elementary
division rules and by limiting the depth of the membrane structure we can char-
acterise each level of the polynomial hierarchy from P to PSPACE. If this hy-
pothesis is correct it will help us understand how membrane division contributes
in the jump from P to PSPACE and will help resolve the P-conjecture.

The idea that increasing the depth of the membrane structure also increases
the computing power of the systems is also consistent with another recent result.
Porreca et al. [13] show that (if no time limit is imposed) increasing the depth of
active membrane systems using only communication and strong non-elementary
division rules permits the systems to solve exponentially harder problems.

This report presents our first steps to proving a link between non-elementary
division for a specific membrane depth and the polynomial hierarchy. We show
that logspace uniform families of membrane system with a structure of depth
d+ 1 can solve problems complete for the dth level of the polynomial hierarchy.
In other words, adding a further level of depth gives us the power of an oracle
for the previous level of the hierarchy.

In future work we hope to find a corresponding upper-bound where a Tur-
ing machine with d alternations can simulate a membrane system with non-
elementary division and depth d+ 1.

2 Definitions for membrane systems

In this section we define membrane systems and some complexity classes, these
definitions are based on those from [4,11,9,10,14]. The set of all multisets over a
set A is denoted MS(A).

2.1 Active membrane systems

Active membrane systems are a class of membrane systems with membrane
division rules. In this paper we use division rules that can act on elementary
membranes, which are membranes that do not contain other membranes (i.e.
leaves in the membrane structure), or non-elementary membranes, membranes
that do contain other membranes.

Definition 1. An active membrane system without charges is a 6-tuple Π =
(O,µ,M,H,L,R) where,

1. O is the alphabet of objects;
2. µ = (Vµ, Eµ) is a tree representing the membrane structure, where Vµ ⊆ N

and Eµ (Vµ × Vµ;
3. M : Vµ → MS(O) maps membranes to their multisets;
4. H is the finite set of membrane labels;

2

5. L : Vµ → H maps membranes to their labels;
6. R is a finite set of developmental rules of the following types (where a, b, c ∈

O and u ∈ MS(O), h ∈ H):
(a) [a → u]h (object evolution),
(b) a []h → [b]h (communication in),
(c) [a]h → []h b (communication out),
(d) [a]h → b (membrane dissolution),

(ew) [a]h → [b]h [c]h, (weak non-elementary membrane division).

The vertices Vµ of the membrane structure tree µ are the individual mem-
branes of the system. The parent of all membranes in the system (the root vertex
in µ) is called the “skin” and has label 0 ∈ H. A configuration C of a membrane
system is a tuple (µ,M,L) whose elements are defined in Definition 1. A per-
missible encoding of a membrane system 〈Π〉, or a configuration 〈C〉, encodes
all multisets in a unary manner. For example, a multiset must be specified in
the format [a, a, a, b, b], rather than a3b2, in order to ensure that at most a
polynomial number of objects are initially encoded in a system.

The rules in the set R are applied to a configuration according to the following
principles:

– All the rules are applied in a maximally parallel manner. In each timestep,
each object in a membrane can only be used for one rule (non-deterministically
chosen when there are several possibilities), but any object which can evolve
by a rule of any form must do so.

– If a membrane labelled h is divided by a rule of type (e) and there are objects
in this membrane which evolve via rules of type (a), then we assume that
first the evolution (a) rules are used, and then the division (e) rules. This
process takes only one step.

– The rules associated with membranes labelled with h are used for membranes
with that label. In each timestep, a membrane can be the subject of only
one rule of types (b)–(ew).

A computation of a membrane system is a sequence of configurations such
that each configuration (except the initial one) is obtained from the previous one
by a transition (one-step maximally parallel application of the rules). Membrane
systems are non-deterministic, therefore on a given input there are multiple
possible computations. A computation that reaches a configuration where no
more rules are applicable is called a halting computation.

Definition 2. A recogniser membrane system is a membrane system Π such
that:

1. all computations halt,
2. yes, no ∈ O,
3. the object yes or object no (but not both) appear in the multiset of the mem-

brane with label 0 (the skin),
4. and this happens only in the halting configuration.

3

2.2 Complexity classes

A problem is a set X = {x1, x2, . . .} ⊆ Σ∗ and its complement is X = Σ∗ −X
where Σ is some finite alphabet. We say that a family Π of membrane systems
recognises a problem if for each x ∈ Σ∗ there is some Π ∈ Π that decides
if x ∈ X. We denote by |x| = n the length of any instance x ∈ Σ∗. Through-
out this paper, AC0 circuits are DLOGTIME-uniform, polynomial sized (in in-
put length n), constant depth, circuits with AND, OR and NOT gates, and
unbounded fan-in [2]. FP, FL, and FAC0 are the classes of functions that are
respectively computable by deterministic Turing Machines in polynomial time,
by deterministic Turing machines using logarithmic space, and by DLOGTIME-
uniform polynomial-sized alternating circuits with unbounded fan-in and con-
stant depth.

Definition 3. Let R be a class of recogniser membrane systems and let t : N→
N be a total function. Let E and F be classes of functions. The class of problems
solved by a (E,F)-uniform family of membrane systems of type R in time t,
denoted (E,F)–MCR(t), contains all problems X such that:

– There exists an F-uniform family of membrane systems, Π = {Π1, Π2, . . .} of
type R: that is, there exists a function f ∈ F, f : {1}∗ → Π such that f(1n) =
Πn, where |x| = n.

– There exists an input encoding function e ∈ E, e : X ∪ X → MS(I) such
that e(x) is the input multiset, which is placed in a specific input membrane
of Πn, where |x| = n and I (O is the set of input objects.

– Π is t-efficient: Πn always halts in at most t(n) steps.
– The family Π is sound with respect to (X, e, f); that is if there is an ac-

cepting computation of the system Π|x| on input multiset e(x) then x ∈ X.
– The family Π is complete with respect to (X, e, f); that is, for each in-

put x ∈ X, then every computation of the system Π|x| on input multiset e(x)
is accepting.

We define the set of languages decided by a uniform family of membrane systems
in polynomial time to be

(E,F)–PMCR =
⋃
k∈N

(E,F)–MCR(nk)

When the symbols E and F are replaced by complexity class names such as AC0, L
or P it means that the uniformity conditions under consideration are in the
function versions of these classes. For example, if we let E = F = AC0 then we
mean that the functions e ∈ E and f ∈ F are computable in uniform FAC0 and
we say we have an AC0-uniform family.

Let AM0
+wne denote the class of membrane systems that obey Definition 2,

and Definition 1. Thus (AC0, L)–PMCAM0
+wne

denotes the class of problems solv-
able by L-uniform families of active membrane systems without charges in poly-
nomial time with weak non-elementary division rules where the input is encoded
using a function in FAC0.

4

Remark 4. A membrane system is said to be confluent if it is both sound and
complete. That is, a membrane system Π is confluent if all computations of Π
with the same input x (properly encoded) give the same result; either always
“accepts” or else always “rejects”.

In a confluent membrane system, given a fixed initial configuration, the system
non-deterministically chooses one from a number of valid computations (config-
uration sequences), but all of these computations must lead to the same result,
either all accepting or all rejecting.

3 Polynomial Hierarchy

A well know extension for models of computation is to augment them with
an “oracle”, that is, the ability to solve certain decision problems in a single
timestep. An oracle machine is a machine with access to a special oracle tape
that is used to make queries of the form “is q ∈ L” for some language L. By the
notation MC we mean the set of problems solved by machines characterising the
complexity class M having access to an oracle for a language L in the complexity
class C. For instance, PNP is the class of problems solved by deterministic Turing
machines working in polynomial time and using an oracle for a problem in NP.

Definition 5 (The Polynomial Hierarchy). The first level of the hierarchy
is ∆0P = Σ0P = Π0P = P. Then each level of the hierarchy is defined for all
i ≥ 0,

∆i+1P = PΣiP

Σi+1P = NPΣiP

Πi+1P = coNPΣiP

We define the cumulative polynomial hierarchy to be the class PH = ∪i≥0ΣiP.

Note that Σ1P = NP and Π1P = coNP. The hierarchy possesses the following
inclusion structure:

ΣiP ∪ΠiP ⊆ ∆i+1P ⊆ Σi+1P ∩Πi+1P, for all i ≥ 0.

Each level of the polynomial hierarchy has its own complete problems.

Problem 6 (Boolean Satisfiability with i Quantifiers (QSATd)). Given a Boolean
formula ϕ, and a partitioning of the variables of ϕ into d sets X1, . . . , Xd. Is
there a partial truth assignment for the variables in X1 such that for all the
partial truth assignment for the variables in X2 such that there is a partial truth
assignments for the variables in X3, and so on up to Xd, such that ϕ is satisfied
by the overall truth assignment?

Lemma 7. QSATd is complete for the class ΣdP[15].

5

We have defined QSATi so that the odd quantifiers are existential. Without loss
of generality we can assume that the expression ϕ is always in conjunctive normal
form with three literals in each clause (3CNF). We refer to this restriction of
QSATd as ΣdSAT for short. If the odd numbered sets of variables are universal
and ϕ in disjunctive normal form with 3 variables in each clause (3DNF) we
refer to it as ΠdSAT.

4 Description of a uniform family to solve ΣdSAT

In this section we provide some details of a uniform family of active membrane
systems with a membrane structure d+ 1 levels deep which decides instances of
ΣdSAT. The uniform family implements the following straightforward quantifier
elimination algorithm to establish the validity of quantified Boolean formulas. We
first describe how the algorithm works on QSAT, then show how it is affected by
considering the restriction ΣdSAT. The algorithm works by reducing the problem
to the evaluation of quantifier-free and variable-free expressions. This method is
based on the following simple observations:

∀xψ(x) ⇐⇒ ψ(0) ∧ ψ(1)
∃xψ(x) ⇐⇒ ψ(0) ∨ ψ(1).

By applying these equivalences recursively to an instance of ΣdSAT, the quan-
tifiers can be eliminated one by one. We then evaluate the final fully expanded
expression to obtain the result. This evaluation can be computed in polynomial
time with respect to the size of the expression; note however, that the expression
to evaluate is exponentially larger than the input, since eliminating a quantifier
doubles its size.

This quantifier elimination algorithm is needlessly inefficient when executed
sequentially: since QSAT is in PSPACE, this problem can be solved in exponen-
tially less space. However, the algorithm can be made to run in polynomial time if
an exponential number of processors are available. The two sub-formulas result-
ing from the elimination of a quantifier can be evaluated independently, and their
truth values conjuncted or disjuncted (according to the specific quantifier) only
in the last step. This is equivalent to evaluating the formula under every possible
assignment to the variables, then feeding the results into an exponentially-sized
Boolean circuit C which forms a complete binary tree (the same form as the re-
cursion tree of the quantifier elimination algorithm, or equivalently, as the parse
tree of the resulting Boolean expression) where the nodes of depth i are ∧-gates
(resp., ∨-gates) if variable xi+1 is universally (resp., existentially) quantified.
Notice that the depth of this circuit is linear with respect to the number of
variables.

When the number of alternations of quantifiers is bounded by a constant d (as
in the problems ΣdSAT and ΠdSAT), and if unbounded fan-in gates are available,
the circuit used to combine the results of the evaluation of the formula can be
reduced to constant depth d. Indeed, a sequence of k consecutive quantifiers can

6

be eliminated simultaneously, as long as they are all universal or all existential,
and the values of the 2k resulting sub-formulas fed into a single ∧- or ∨-gate,
thus increasing the depth of the circuit just by one. In symbols:

∀x1 · · · ∀xkϕ(x1, . . . , xk) ⇐⇒
∧

(x1,...,xk)∈{0,1}k

ϕ(x1, . . . , xk)

∃x1 · · · ∃xkϕ(x1, . . . , xk) ⇐⇒
∨

(x1,...,xk)∈{0,1}k

ϕ(x1, . . . , xk).

4.1 Encoding of ΣdSAT instances

We specify that instances of ΣdSAT are encoded as follows.
We encode which variables are bound by which quantifiers in a binary matrix

Q with m rows and m columns. Each column represents one of the m variables
of the formula. There are a maximum of m rows since at most d ≤ m quantifiers
are possible for each instance. The elements of Q are defined as follows:

qi,j =

{
1 variable xj is bound by the ith quantifier
0 otherwise

To encode the Boolean formula ϕ we use P a 2m×2m×2m three dimensional
binary matrix. Each element of the matrix represents the three variables in a
clause in the problem instance. If the element qi,j,k = 1 then the variables
xi mod m, xj mod m xk mod m exist in the clause. If i < m then the variable x1 is
unnegated in the clause while if i > m then the variable xi appears negated.

The total length of the binary string (we flatten the matrices to strings) to
encode an instance of ΣdSAT with m variables is thus m2 + 2m3 bits.

4.2 Evaluating quantified Boolean formulas

We now describe a logspace uniform family of active membrane systems without
charges to recognise problem ΣdSAT and where d is odd. (The arguments for
even d and for the problem ΠdSAT are similar.) The family encoding function
f takes as input the number 1m

2+2m3
which is the length of the input instance

encoded in unary, from this it calculates the value m which is used to construct
the family member Πn.

We present a high level sketch of the membrane structure and rules of Πn to
convince the reader of the systems existence.

The membrane structure µ of Πn is represented (in bracket language) as
follows:

d membranes︷ ︸︸ ︷[[
· · ·
[[[

[]c〈1,1,1〉 []c〈1,1,2〉 · · · []c〈2m,2m,2m〉︸ ︷︷ ︸
2m3 membranes

]
d+1

]
d

]
d−1
· · ·
]
2

]
1

7

The input membrane is d + 1 and contains the objects produced by the e
function from Definition 3. This function takes a potential instances of ΣdSAT
as input, instances are encoded as binary strings using the scheme described
in Section 4.1. For each element pi,j,k = 0 of the matrix P an object c〈i,j,k〉 is
created, these represent the clauses not used in the instance. For each element
qi,j = 1 of the matrix Q the object xi,j,0 such that 1 ≤ i ≤ m and variable
xi is bound by the j-th quantifier in the input formula. The third subscript of
xi,j,0 is a time counter, which is incremented during each computation steps
by evolution rules such as [xi,j,t → xi,j,t+1]d+1, unless a different behaviour
is explicitly described below for some values of t. It is easy to imagine how a
uniform constant depth circuit can map the encoding described in Section 4.1
to these objects, so we claim the object encoding function e is in FAC0.

A timer-object zi,0 is contained in membrane i for 1 ≤ i ≤ d + 1; it is also
incremented via [zi,t → zi,t+1]i during each step, unless explicitly stated below.
All membranes cj contain an analogous object z0,0.

The computation of Πn on a given input is divided into four phases.

Phase 1. Dissolution of membranes representing unused clauses. Membrane
c〈i,j,k〉 represents the same clause as the element pi,j,k in Section 4.1. These
membranes are dissolved during the first two computation steps if that clause
does not occur in the input formula (i.e., if object c〈i,j,k〉 occurs in the input
multiset), according to the following rules:

c〈i,j,k〉 []c〈i,j,k〉 → [c〈i,j,k〉]c〈i,j,k〉 [c̄〈i,j,k〉]c〈i,j,k〉 → λ

The total duration of Phase 1 is exactly two computation steps.

Phase 2. Quantifier elimination In the second phase we use non-elementary
membrane division in order to carry out the process of quantifier elimination, as
described in the beginning of this section.

Let xi be the variable bound by the first quantifier having the smallest sub-
script. The corresponding object xi,1,2 (here the third subscript is 2 because the
first phase took two steps) is first moved to membrane 2 (the one immediately
below the corresponding quantifier-membrane) by using a series of communica-
tion rules:

[xi,1,2]d+1 → []d+1 xi,1,3 [xi,1,3]d → []d xi,1,4 · · ·
[xi,1,d−1]4 → []4 xi,1,d [xi,1,d]3 → []3 xi,1,d+1

Then, object xi,1,d+1 divides membrane 2, duplicating all of its substructure, and
becoming a “true” object on one side and a “false” object on the other:

[xi,1,d+1]2 → [ti,ε,d+2]2 [fi,ε,d+2]2

The second subscript is erased (i.e., replaced by ε) in the process, since it is not
needed anymore. The object ti,ε,d+2 is now brought back to membrane d + 1

8

using another series of communication rules:

ti,ε,d+2 []3 → [ti,ε,d+3]3 ti,ε,d+3 []3 → [ti,ε,d+4]3 · · ·
ti,ε,2d []d → [ti,ε,2d+1]d ti,ε,2d+1 []d+1 → [ti,ε,2d+2]d+1

and analogously for fi,ε,d+2. Notice that now we have two instances of membrane
d + 1: in one of them, the variable xi is set to true, and in the other it is set
to false. The timer subscript of ti,ε,d+2 and fi,ε,d+2 continues to be incremented
inside membrane d+ 1.

In the subsequent steps, the objects representing the other variables bound
by the first quantifier move to membrane 2 to divide and generate an assignment
for their variable then move back to membrane d+ 1. This same process is then
performed for all variables bound by the second quantifier, then third and so
on until the dthquantifier. The timers can be synchronized correctly by always
assuming the longest possible path (from membrane d+ 1 to 2) which is 2d+ 1
steps. The time required by Phase 2 is then m(2d+ 1) steps. At the end of this
phase each of the 2m copies of membrane d+ 1 contains a different assignment
(either a ti,ε,m(2d+1)+2 or fi,ε,m(2d+1)+2 object) to the variables x1, . . . , xm.

Phase 3. Evaluation of the matrix of the formula. The objects representing truth
assignments of the variables now must be copied so that there are enough for
each clause-membrane to take in. That is, each membrane representing a clause
containing the literal xi can bring in a copy of the corresponding “true” object,
and each one containing the literal x̄i can bring in a copy of the corresponding
“false” object. Each of the copies is subscripted by the name of one of the clauses
which they satisfy, i.e.,

[ti,ε,m(2d+1)+2 → {t′i,ε,〈j,k,l〉 | i = j ∨ i = k ∨ i = l}]d+1

[fi,ε,m(2d+1)+2 → {f ′i,ε,〈j,k,l〉 | i+m = j ∨ i+m = k ∨ i+m = l}]d+1

Notice that these objects do not need a timer subscript.
To evaluate a clause occurring in the input formula, membrane c〈i,j,k〉 tries

to bring in one of the objects corresponding to a variable assignment that will
make the clause true. (Recall that in the first phase we removed all clauses not
appearing in the input instance.) For example, for the membrane c〈1,2,6〉 which
represents the clause x1 ∨ x2 ∨ x̄3 uses the following rules:

t′1,ε,〈i,j,k〉 []c〈1,2,6〉 → [t′d+1]c〈1,2,6〉 where 1 = i ∨ 1 = j ∨ 1 = k

t′2,ε,〈i,j,k〉 []c〈1,2,6〉 → [t′d+1]c〈1,2,6〉 where 2 = i ∨ 2 = j ∨ 2 = k

f ′3,ε,〈i,j,k〉 []c〈1,2,6〉 → [t′d+1]c〈1,2,6〉 where 6 = i ∨ 6 = j ∨ 6 = k

At most three objects are sent to in each clause membrane c〈i,j,k〉 in successive
steps. One of the objects t′d+1 (whose only subscript indicates that it is a “true”
object of level d + 1, this prevents mixing up truth values on different levels of
the membrane structure) after at most three steps dissolves membrane c〈i,j,k〉
via

[t′d+1]c〈i,j,k〉 → t′d+1

9

If t′d+1 has not dissolved c〈i,j,k〉 at time m(2d + 1) + 7, then we infer that the
clause is not satisfied. The counter object z0,m(2d+1)+7 (whose second subscript
has been incremented each step) in each remaining clause membrane evolves into
a false value and dissolves the membrane:

[z0,m(2d+1)+7]c〈i,j,k〉 → f ′d+1

After at most six computation steps, all the objects denoting the results of the
evaluations have been sent to d+ 1.

Membrane d+ 1 now computes the conjunction of the value-objects located
inside it. If a “false” object f ′d+1 appears, then the whole conjunction has a false
result which is denoted by f ′d:

[f ′d+1]→ f ′d

If no instance of f ′d+1 appears inside d+ 1 at time m(2d+ 1) + 9, then all clauses
evaluate to true. The object zd+1,m(2d+1)+9 (obtained by repeatedly increasing
the second subscript of zd+1,0 as described above for z0,0) is then used to produce
a true result:

[zd+1,m(2d+1)+9]→ t′d

Now each instance of membrane d contains either t′d or f ′d, each of these objects
represents the evaluation of Boolean formula on some assignment. The whole
phase requires at most eight steps.

Phase 4. Computing the value of the whole formula The 2m−1 copies of mem-
brane d (corresponding to the innermost quantifier of the input formula) must
now combine the results coming from the (now dissolved) children membranes
labelled by d + 1. Since d is odd by hypothesis, the last quantifier is ∃, hence
the results must be combined by disjunction. If a true object t′d exists, then the
result of the evaluation is, in turn, true:

[t′d]d → t′d−1

otherwise, we can dissolve d via the object zd,m(2d+1)+11 (when its counter
reaches this value), which is transformed into a false value:

[zd,m(2d+1)+11]d → f ′d−1

The evaluation then proceeds to the upper (i.e., outermost) levels of the
membrane structure in a completely analogous way, alternating universal quan-
tification (corresponding to conjunction, which is performed as described at the
end of Phase 3) and existential quantification. Clearly, the counters of the zi,t
objects must be adjusted appropriately: this is easy to accomplish, since the
evaluation of each quantifier requires at most two computation steps.

The only difference occurs on the last level: instead of sending out object t′0
or f ′0 from the outermost membrane, we use the objects yes and no in order to
signal the result of the whole computation.

Phase 4 is completed in 2d steps.
This Section describes the proof for the following theorem.

10

Theorem 8. ΣdSAT ∈ (AC0, L)–PMCAM0
+wne

where the depth of the membrane
structure is limited to d+ 1.

Note that we do not give the membrane system family in enough detail to show
that it holds for AC0-uniformity however the system described is easily L uniform.

Corollary 9. QSAT ∈ (AC0, L)–PMCAM0
+wne

if the depth of the membrane
structure is polynomial of m, the number of variables.

5 Conclusions and future directions

We proved that in the setting of active membrane systems without charges and
using non-elementary division rules, a membrane structure of depth d+ 1 is suf-
ficient to decide (in polynomial time) the validity of quantified Boolean formulas
with d alternations of quantifiers. An interpretation of this result is that each
level of nesting of membranes provides access to an oracle. Since there is no
known way to perform the same task using substantially shallower membrane
structures, this seems to suggest that increasing the depth of the membrane
structure actually increases the computing power of the systems.

Whether this apparent phenomenon corresponds to reality remains an open
problem. Future work on this topic may involve simulating arbitrary (d + 1)-
depth families of membrane systems by devices characterising the dth level of
the polynomial hierarchy (such as suitable alternating Turing machines). Also,
identifying the relationship between depth and membrane division on the one
hand, and alternation on the other.

References

1. Artiom Alhazov and Mario J. Pérez-Jiménez. Uniform solution to QSAT using
polarizationless active membranes. In Jérôme Durand-Lose and Maurice Margen-
stern, editors, Machines, Computations and Universality (MCU), volume 4664 of
LNCS, pages 122–133, Orléans, France, September 2007. Springer.

2. David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity
within NC1. Journal of Computer and System Sciences, 41(3):274–306, 1990.

3. Daniel Dı́az-Pernil, Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez, and
Agustin Riscos-Núñez. A logarithmic bound for solving subset sum with P systems.
In 8th International Workshop on Membrane Computing, WMC 2007, volume 4860
of Lecture Notes in Computer Science, pages 257–270. Springer, 2007.

4. Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez, Agust́ın Riscos-Núñez, and
Francisco J. Romero-Campero. Computational efficiency of dissolution rules in
membrane systems. International Journal of Computer Mathematics, 83(7):593–
611, 2006.

5. Giancarlo Mauri, Mario Pérez-Jiménez, and Claudio Zandron. On a Păun’s conjec-
ture in membrane systems. In José Mira and José R. Álvarez, editors, Bio-inspired
Modeling of Cognitive Tasks, volume 4527, pages 180–192. Springer Berlin / Hei-
delberg, 2007.

11

6. Niall Murphy and Damien Woods. Active membrane systems without charges and
using only symmetric elementary division characterise P. In G. Eleftherakis, P. Ke-
falas, G. Păun, G. Rozenberg, and A. Salomaa, editors, Membrane Computing, 8th
International Workshop, WMC 2007 Thessaloniki, Greece, June 25-28, 2007 Re-
vised Selected and Invited Papers, volume 4860 of LNCS, pages 367–384. Springer,
2007.

7. Niall Murphy and Damien Woods. A characterisation of NL using membrane
systems without charges and dissolution. In UC, pages 164–176. Springer, 2008.
To appear.

8. Niall Murphy and Damien Woods. Uniformity conditions in natural computing.
In Proceedings of DNA16, 2010. To appear.

9. Gheorghe Păun. P Systems with active membranes: Attacking NP-Complete prob-
lems. Journal of Automata, Languages and Combinatorics, 6(1):75–90, 2001.

10. Gheorghe Păun. Membrane Computing. Springer-Verlag, Berlin, 2002.
11. Mario J. Pérez-Jiménez, Alvaro Romero-Jiménez, and Fernando Sancho-Caparrini.

Complexity classes in models of cellular computing with membranes. Natural Com-
puting, 2(3):265–285, 2003.

12. Mario J. Pérez-Jiménez, Agust́ın Riscos-Núñez, Alvaro Romero–Jiménez, and
Damien Woods. Handbook of Membrane systems, chapter 12: Complexity – Mem-
brane Division, Membrane Creation. Oxford University Press, 2009.

13. Antonio E. Porreca, Alberto Leporati, and Claudio Zandron. On a powerful class
of non-universal P systems with active membranes. Submitted, 2010.

14. Petr Sośık and Alfonso Rodŕıguez-Patón. Membrane computing and complexity
theory: A characterization of PSPACE. Journal of Computer and System Sciences,
73(1):137–152, 2007.

15. Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Sci-
ence, 3(1):1–22, 1976.

16. Damien Woods, Niall Murphy, Mario J. Pérez-Jiménez, and Agust́ın Riscos-Núñez.
Membrane dissolution and division in P. In Unconventional Computation, volume
5715, pages 262–276, 2009.

12

	First steps towards linking membrane depth and the Polynomial Hierarchy
	Antonio E. Porreca and Niall Murphy

