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Summary. In the framework of tissue P systems with cell division, the length of com-
munication rules provides a frontier for the tractability of decision problems. On the
one hand, the limitation on the efficiency of tissue P systems with cell division and
communication rules of length 1 has been established. On the other hand, polynomial
time solutions to NP–complete problems by using families of tissue P systems with cell
division and communication rules of length at most 3 has been provided.

In this paper, we improve the previous result by showing that the HAM-CYCLE problem
can be solved in polynomial time by a family of tissue P systems with cell division by
using communication rules with length at most 2. Hence, a new tractability boundary is
given: passing from 1 to 2 amounts to passing from non–efficiency to efficiency, assuming
that P ̸= NP.

1 Preliminaries

An alphabet, Σ, is a non–empty set whose elements are called symbols. An ordered
finite sequence of symbols is a string or word. If u and v are strings over Σ, then so
is their concatenation uv, obtained by juxtaposition, that is, writing u and v one
after the other. The number of symbols in a string u is the length of the string and
it is denoted by |u|. As usual, the empty string (with length 0) will be denoted by λ.
The set of all strings over an alphabet Σ is denoted by Σ∗. In algebraic terms, Σ∗

is the free monoid generated by Σ under the operation of concatenation. Subsets,
finite or infinite, of Σ∗ are referred to as languages over Σ.
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The Parikh vector associated with a string u ∈ Σ∗ with respect to alphabet
Σ = {a1, . . . , ar} is ΨΣ(u) = (|u|a1 , . . . , |u|ar ), where |u|ai denotes the number of
ocurrences of symbol ai in string u. This is called the Parikh mapping associated
with Σ. Notice that, in this definition, the ordering of the symbols from Σ is
relevant. If Σ1 = {ai1 , . . . , ais} ⊆ Σ, then we define ΨΣ1(u) = (|u|ai1

, . . . , |u|ais
),

for each u ∈ Σ∗.
A multiset m over a set A is a pair (A, f) where f : A → N is a mapping. If

m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) >
0}. A multiset is empty (resp. finite) if its support is the empty set (resp. a finite
set). If m = (A, f) is a finite multiset over A and supp(m) = {a1, . . . , ak}, then
it will be denoted as m = {af(a1)

1 , . . . , a
f(ak)
k }. That is, superscripts indicate the

multiplicity of each element, and if f(x) = 0 for x ∈ A, then element x is omitted.

A finite multiset m = {af(a1)
1 , . . . , a

f(ak)
k } can also be represented by the string

a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}. Nevertheless, all permutations of

this string identify the same multiset m precisely. Throughout this paper, we speak
about “the finite multiset m” where m is a string, meaning “the finite multiset
represented by the string m”.

If m1 = (A, f1), m2 = (A, f2) are multisets over A, then we define the union of
m1 and m2 as m1 +m2 = (A, g), where g = f1 + f2, that is, g(a) = f1(a) + f2(a),
for each a ∈ A.

For any sets A and B the relative complement A \ B of B in A is defined as
follows:

A \B = {x ∈ A | x /∈ B}

In what follows, we assume the reader is already familiar with the basic notions
and terminology of P systems. For details, see [9].

2 Introduction

Several different models of cell-like P systems have been successfully used to solve
computationally hard problems efficiently by trading space for time. An exponen-
tial workspace is created in polynomial time by using some kind of rules, and then
massive parallelism is used to simultaneously check all the candidate solutions.
Inspired by living cells, several ways for obtaining exponential workspace in poly-
nomial time were proposed: membrane division (mitosis) [8], membrane creation
(autopoiesis) [4], and membrane separation (membrane fission) [6]. These three
ways have given rise to the following models: P systems with active membranes, P
systems with membrane creation, and P systems with membrane separation.

A new type of P systems, the so-called tissue P systems, was considered in [5].
Instead of considering a hierarchical arrangement, membranes/cells are placed in
the nodes of a virtual graph. This variant has two biological justifications: intercel-
lular communication and cooperation between neurons. The common mathemat-
ical model of these two mechanisms is a net of processors dealing with symbols



An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division 143

and communicating these symbols along channels specified in advance. Commu-
nication among cells is based on symport/antiport rules, which were introduced
to P systems in [10]. One of the most interesting variants of tissue P systems was
presented in [11], where the definition of tissue P systems is combined with aspects
of the definition of P systems with active membranes, yielding tissue P systems
with cell division. In these models [11], cells may replicate, that is, the two new
cells generated by a division rule have exactly the same objects except for at most
one differing pair of objects.

2.1 Tissue P Systems with communication rules

Definition 2.1 A tissue P system with symport/antiport rules of degree q ≥ 1 is
a tuple Π = (Γ, E ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet.
2. E ⊆ Γ .
3. M1, . . . ,Mq are strings over Γ .
4. R is a finite set of communication rules of the form (i, u/v, j), for i, j ∈

{0, 1, 2, . . . , q}, i ̸= j, u, v ∈ Γ ∗, |uv| > 0.
5. iout ∈ {0, 1, 2, . . . , q}.

A tissue P system with symport/antiport rules Π = (Γ, E ,M1, . . . ,Mq,R, iout),
of degree q ≥ 1 can be viewed as a set of q cells, labelled by 1, . . . , q, with an
environment labelled by 0 such that: (a) M1, . . . ,Mq are strings over Γ repre-
senting the finite multisets of objects (elements in Γ ) initially placed in the q
cells of the system; (b) E is the set of objects located initially in the environment
of the system, all of them appearing in an arbitrary number of copies; and (c)
iout ∈ {0, 1, 2, . . . , q} represents a distinguished cell or the environment which will
encode the output of the system.

When applying a rule (i, u/v, j), the objects of the multiset represented by u
are sent from region i to region j and, simultaneously, the objects of multiset v are
sent from region j to region i. The length of the communication rule (i, u/v, j) is
defined as |u|+ |v|, that is, the total number of objects which appear in the rule.

A communication rule (i, u/v, j) is called a symport rule if u = λ or v = λ. A
symport rule (i, u/λ, j), with i ̸= 0, j ̸= 0, provides a virtual arc from cell i to cell
j. A communication rule (i, u/v, j) is called an antiport rule if u ̸= λ and v ̸= λ.
An antiport rule (i, u/v, j), with i ̸= 0, j ̸= 0, provides two arcs: one from cell i
to cell j and another one from cell j to cell i. Thus, every tissue P systems has
an underlying directed graph whose nodes are the cells of the system and the arcs
are obtained from communication rules. In this context, the environment can be
considered as a virtual node of the graph such that their connections are defined
by communication rules of the form (i, u/v, j), with i = 0 or j = 0.

The rules of a system like the one above are used in a non-deterministic maxi-
mally parallel manner as it is customary in Membrane Computing. At each step,
all cells which can evolve must evolve in a maximally parallel way (at each step
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we apply a multiset of rules which is maximal, no further applicable rule can be
added).

An instantaneous description or a configuration at any instant of a tissue P
system is described by all multisets of objects over Γ associated with all the
cells present in the system, and the multiset of objects over Γ − E associated
with the environment at that moment. Bearing in mind that the objects from E
have infinite copies in the environment, they are not properly changed along the
computation. The initial configuration is (M1, · · · ,Mq; ∅). A configuration is a
halting configuration if no rule of the system is applicable to it.

Let us fix a tissue P system with symport/antiport rules Π. We say that
configuration C1 yields configuration C2 in one transition step, denoted C1 ⇒Π C2,
if we can pass from C1 to C2 by applying the rules from R following the previous
remarks. A computation of Π is a (finite or infinite) sequence of configurations
such that:

1. the first term of the sequence is an initial configuration of the system;
2. each non-initial configuration of the sequence is obtained from the previous

configuration by applying the rules of the system in a maximally parallel man-
ner with the restrictions previously mentioned; and

3. if the sequence is finite (called halting computation), then the last term of the
sequence is a halting configuration.

All computations start from an initial configuration and proceed as stated above;
only halting computations give a result, which is encoded by the objects present
in the output region (a cell or the environment) iout in the halting configuration.
Notation: If C = {Ci}i<r+1 (r ∈ N) is a halting computation of Π, then the
length of C is r, that is, the number of non-initial configurations which appear in
the finite sequence C. We denote it by |C|. We also denote by Ci(j) the contents of
cell j at configuration Ci.

2.2 Tissue P Systems with Cell Division

Cell division is an elegant process that enables organisms to grow and reproduce.
Mitosis is a process of cell division which results in the production of two daughter
cells from a single parent cell. Daughter cells are identical to one another and to the
original parent cell. Through a sequence of steps, the replicated genetic material
in a parent cell is equally distributed to two daughter cells. While there are some
subtle differences, mitosis is remarkably similar across organisms.

Before a dividing cell enters mitosis, it undergoes a period of growth where the
cell replicates its genetic material and organelles. Replication is one of the most
important functions of a cell. DNA replication is a simple and precise process that
creates two complete strands of DNA (one for each daughter cell) where only one
existed before (from the parent cell).

Let us recall that the model of tissue P systems with cell division is based on
the cell-like model of P systems with active membranes [8]. In these models, the
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cells are not polarized; the cells obtained by division have the same labels as the
original cell, and if a cell is divided, its interaction with other cells or with the
environment is locked during the division process. In some sense, this means that
while a cell is dividing it closes its communication channels.

Definition 2.2 A tissue P system with cell division of degree q ≥ 1 is a tuple
Π = (Γ, E ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet.
2. E ⊆ Γ .
3. M1, . . . ,Mq are strings over Γ .
4. R is a finite set of rules of the following forms:

(a)Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i ̸= j, u, v ∈ Γ ∗,
|u · v| ̸= 0;

(b)Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q}, i ̸= iout and a, b, c ∈
Γ .

5. iout ∈ {0, 1, 2, . . . , q}.

A tissue P system with cell division is a tissue P system with symport/antiport
rules where division rules of cells are allowed.

When applying a division rule [a]i → [b]i[c]i, under the influence of object a,
the cell with label i is divided into two cells with the same label; in the first copy,
object a is replaced by object b, in the second one, object a is replaced by object
c; all the other objects are replicated and copies of them are placed in the two new
cells. The output cell iout cannot be divided.

The rules of a tissue P systems with cell division are applied in a non-
deterministic maximally parallel manner as it is customary in membrane comput-
ing. At each step, all cells which can evolve must evolve in a maximally parallel
way (at each step we apply a multiset of rules which is maximal, no further rule
can be added), with the following important remark: if a cell divides, only the
division rule is applied to that cell at that step; the objects inside that cell do
not evolve by means of communication rules. In other words, we can think that
before division a cell interrupts all its communication channels with the other cells
and with the environment. The new cells resulting from division will only interact
with other cells or with the environment at the next step – providing they do not
divide once again. The label of a cell identifies the rules which can be applied to
it precisely.

2.3 Recognizer Tissue P Systems with Cell Division

Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX . There are many different ways to describe instances of a decision
problem, but we assume that each problem has associated with it a fixed reasonable
encoding scheme (in the sense of [2], page 10) which provides a string associated
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with each problem instance. The size of an instance u ∈ IX is the length of the
string associated with it by means of a reasonable encoding scheme.

Many abstract problems are not decision problems, for example, in combina-
torial optimization problems some value must be optimized (minimized or maxi-
mized). In order to deal with such problems, they can be transformed into roughly
equivalent decision problems by supplying a target/threshold value for the quan-
tity to be optimized, and then asking whether this value can be attained.

A natural correspondence between decision problems and languages over a
finite alphabet, can be established as follows. Given a decision problem X =
(IX , θX), its associated language is LX = {w ∈ IX : θX(w) = 1}. Con-
versely, given a language L over an alphabet Σ, its associated decision problem is
XL = (IXL

, θXL
), where IXL

= Σ∗, and θXL
= {(x, 1) : x ∈ L}∪{(x, 0) : x /∈ L}.

The solvability of decision problems is defined through the recognition of the lan-
guages associated with them by means of languages recognizer devices.

In order to study the computational efficiency of membrane systems, the no-
tions from classical computational complexity theory are adapted for Membrane
Computing, and a special class of cell-like P systems is introduced in [13]: recog-
nizer P systems (called accepting P systems in a previous paper [12]). Similarly,
recognizer tissue P systems are introduced in [11].

Definition 2.3 A recognizer tissue P system with cell division of degree q ≥ 1 is
a tuple Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout), where:

1. (Γ, E ,M1, . . . ,Mq,R, iout) is a tissue P system with cell division of degree
q ≥ 1 (as defined in the previous section).

2. The working alphabet Γ has two distinguished objects yes and no being, at
least, one copy of them present in some initial multisets M1, . . . , Mq, but
none of them are present in E.

3. Σ is an (input) alphabet strictly contained in Γ such that E ∩Σ = ∅.
4. M1, . . . ,Mq are strings over Γ \Σ.
5. iin ∈ {1, . . . , q} is the input cell.
6. iout = 0, that is, the output region is the environment.
7. All computations halt.
8. If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of the
computation.

For each multiset m over Σ, the computation of the system Π with input m starts
from the configuration of the form (M1,M2, . . . ,Miin+m, . . . ,Mq; ∅), that is, the
input multiset m has been added to the contents of the input cell iin. Therefore,
we have an initial configuration associated with each input multiset m (over the
input alphabet Σ) in this kind of systems.

Given a recognizer tissue P system with cell division Π, and a halting compu-
tation C = {Ci}i<r+1 of Π (r ∈ N), we define the result of C as follows:
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Output(C) =


yes, if Ψ{yes,no}(Mr,0) = (1, 0) ∧

Ψ{yes,no}(Mi,0) = (0, 0) for i = 0, . . . , r − 1
no, if Ψ{yes,no}(Mr,0) = (0, 1) ∧

Ψ{yes,no}(Mi,0) = (0, 0) for i = 0, . . . , r − 1

where Ψ is the Parikh function, and Mi,0 is the multiset over Γ \E associated with
the environment at configuration Ci. In particular, Mr,0 is the multiset over Γ \ E
associated with the environment at the halting configuration Cr.

We say that a computation C is an accepting computation (respectively, reject-
ing computation) if Output(C) = yes (respectively, Output(C) = no), that is, if
object yes (respectively, object no) appears in the environment associated with the
corresponding halting configuration of C, and neither object yes nor no appears
in the environment associated with any non–halting configuration of C.

For each natural number k ≥ 1, we denote by TDC(k) the class of recognizer
tissue P systems with cell division and communication rules with length at most
k.

2.4 Polynomial Complexity Classes of Tissue P systems with Cell
Division

Now, we define what it means to solve a decision problem in the framework of
tissue P systems efficiently and in a uniform way. Since we define each tissue P
system to work on a finite number of inputs, to solve a decision problem we define
a numerable family of tissue P systems.

Definition 2.4 We say that a decision problem X = (IX , θX) is solvable in a
uniform way and polynomial time by a family Π = {Π(n) | n ∈ IN} of recognizer
tissue P systems with cell division if the following holds:

1. The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ IN.

2. There exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
(a) for each instance u ∈ IX , s(u) is a natural number5and cod(u) is an input

multiset of the system Π(s(u));
(b) for each n ∈ IN, s−1(n) is a finite set;
(c) the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and it performs at most
p(|u|) steps;

(d) the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

5 Note, for this definition to be compatible with the notion of uniformity in Boolean
circuit complexity [15] we restrict s(u) to be some function on |u|, the length of u.



148 A.E. Porreca, N. Murpy, M.J. Pérez-Jiménez

(e) the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

From the soundness and completeness conditions above we deduce that every P
system Π(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

Let R be a class of recognizer tissue P systems. We denote by PMCR the
set of all decision problems which can be solved in a uniform way and polynomial
time by means of families of systems from R. The class PMCR is closed under
complement and polynomial–time reductions [12].

3 Computational Efficiency of Tissue P Systems with Cell
Division

It is well known that tissue P systems with cell division are able to solve computa-
tionally hard problems efficiently. Specifically, NP–complete problems have been
solved in linear time [1] by using families of tissue P systems with cell division and
communication rules of length at most 3. Thus, NP ∪ co−NP ⊆ PMCTDC(3).
In [3] has been proved P = PMCTDC(1), that is, only tractable problems can
be efficiently solved by using families of tissue P systems with cell division and
communication rules of length 1. Therefore, in the framework of tissue P systems
with cell division, passing the maximum length of communication rules of the sys-
tems from 1 to 3 amounts to passing from non–efficiency to efficiency, assuming
that P ̸= NP. An interesting challenge is to provide new efficient solutions to
computationally hard problems by means of tissue P systems with cell division by
using communication rules of length at most 2.

In the next Section, we give a family of tissue P systems with cell division and
communication rules of length at most 2 which solves the HAM-CYCLE problem, a
well known NP–complete problem, in polynomial time.

4 On efficiency of TDC(2)

We start by giving some concepts and notations related to graph theory that we
will use throughout this paper.

4.1 Hamiltonian cycles in directed graphs

First of all, let us recall some concepts related to graph theory which are relevant
in this paper.

Definition 4.1 Let G = (V,E) be a directed graph. Let V = {1, . . . , n}, E =
{(u1, v1), . . . , (up, vp)} ⊂ V × V . A finite sequence γ = (uα1 , uα2 , . . . , uαr , uαr+1)
of nodes of G is a simple path of G of length r ≥ 1 if the following holds:
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• ∀i (1 ≤ i ≤ r → (uαiuαi+1) ∈ E).
• |{uα1 , uα2 , . . . , uαr}| = r.

If uαr+1 /∈ {uα1 , uα2 , . . . , uαr}, then we say that γ is a simple path of length r from
uα1 to uαr+1 . If uαr+1 = uα1 , then we say that γ is a simple cycle of length r (in this
case, we assume r ≥ 2). A Hamiltonian path of G from a ∈ V to b ∈ V (a ̸= b) is a
simple path γ = (uα1 , uα2 , . . . , uαr , uαr+1) from a to b such that a = uα1 , b = uαr+1 ,
and V = {uα1 , uα2 , . . . , uαr , uαr+1}. A Hamiltonian cycle of G is a simple cycle
γ = (uα1 , uα2 , . . . , uαr , uαr+1) of G such that V = {uα1 , uα2 , . . . , uαr}.

If γ = (uα1 , uα2 , . . . , uαr , uαr+1) is a simple path of G then we also denote it by
the set {(uα1 , uα2)1, (uα2 , uα3)2, . . . , (uαr , uαr+1)r}. That is, (uαk

, uαk+1
)k can be

interpreted as the k-th arc of the path γ, for each k (1 ≤ k ≤ r).
Given a directed graph G = (V,E), throughout this paper we denote

AG = {(u, v)k | u, v, k ∈ {1, . . . , n} ∧ (u, v) ∈ E}
A′

G = {(u, v)′k | u, v, k ∈ {1, . . . , n} ∧ (u, v) ∈ E}
A′′

G = {(u, v)′′k | u, v, k ∈ {1, . . . , n} ∧ (u, v) ∈ E}

Proposition 4.2 Let G = (V,E) be a directed graph. Let V = {1, . . . , n} and
AG = {(u, v)k| u, v, k ∈ {1, . . . , n} ∧ (u, v) ∈ E}. If B ⊆ AG then the following
assertions are equivalent:

1. B is a Hamiltonian cycle.
2. |B| = n and the following holds: for each ∀u, u′, v, v′, k, k′ ∈ {1, . . . , n},

(a) [(u, v)k ∈ B ∧ (u′, v′)k′ ∈ B ∧ (u, v)k ̸= (u′, v′)k′ → k ̸= k′]
(b) [(u, v)k ∈ B ∧ (u′, v′)k′ ∈ B ∧ (u, v)k ̸= (u′, v′)k′ → u ̸= u′]
(c) [(u, v)k ∈ B ∧ (u′, v′)k′ ∈ B ∧ (u, v)k ̸= (u′, v′)k′ → v ̸= v′]
(d) [(u, v)k ∈ B ∧ (u′, v′)k+1 ∈ B → v = u′]

Proof: Let B = {(uα1 , uα2)1, (uα2 , uα3)2 . . . , (uαm , uαr+1)n} be a Hamiltonian cy-
cle of G. Then, |B| = n and the conditions (a), (b), (c) and (d) from (2) hold.

Let B ⊆ AG such that |B| = n and the conditions (a), (b), (c) and (d) from
(2) hold. Then, from (a) the set B must to be of the form

B = {(uα1 , vα1)1, (uα2 , vα2)2 . . . , (uαn , vαn)n}

where:

• From (d) we deduce that ∀i (1 ≤ i ≤ n− 1 → vαi = uαi+1).
• From (b) we have V = {uα1 , uα2 , . . . , uαn}.

Finally, on the one hand we have vαn ∈ {uα1 , uα2 . . . , uαn}. On the other hand,
by condition (c) we deduce that vαn /∈ {vα1 , . . . , vαn−1} = {uα2 , . . . , uαn}. Thus
vαn = uα1 .

�
Remark 1: If B ⊆ AG is a Hamiltonian cycle of G, then it cannot have different
pairs of elements of the types (i, j)k and (i, j′)k′ , or of the types (i, j)k and (i′, j)k′ ,
or (i, j)k and (i′, j′)k, or (i, j)k and (i′, j′)k+1 with j ̸= i′.
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Remark 2: Let us notice that if (uα1 , uα2 , . . . , uαn , uα1) is a Hamiltonian cycle of
G of length n, then we can describe it by the following subset of AG:

B1 = {(uα1 , uα2)1, (uα2 , uα3)2, . . . , (uαn , uα1)n}

But (uα2 , uα3 , . . . , uαm , uα1 , uα2) is also a Hamiltonian cycle of G of length m. It
can be described as follows:

B2 = {(uα2 , uα3)1, (uα3 , uα4)2, . . . , (uα1 , uα2)n}

Thus, given a Hamiltonian cycle γ of G, there are exactly n different subsets of
AG codifying exactly the cycle γ.
Remark 3: Let us supose that the total number of Hamiltonian cycles of G is q.
Then, the number of different subsets B of AG verifying conditions (a), (b), (c),
and (d) of the previous Proposition is exactly n · q.

4.2 An efficient, uniform solution of HAM-CYCLE in TDC(2)

In this Section we provide a uniform and polynomial time solution for the
HAM-CYCLE problem by using a family of tissue P systems with cell division and
communication rules of length at most 2.

Let us recall that the HAM-CYCLE problem is the following: given a directed
graph, to determine whether or not there exists a Hamiltonian cycle in the graph.
This is a well known NP-complete problem [2].

The proposed solution follows a brute force algorithm implemented in the
framework of recognizer tissue P systems with cell division. The solution consists
of the following stages:

• Generation Stage: From the input cell labelled by in, all possible combinations
of arcs including a code of their position in potential paths, are generated in
those cells and by using cell division in an adequate way.

• Checking Stage: In each cell labelled by in, it is checked whether or not the
different combinations of arcs encode Hamiltonian cycles of the graph.

• Output Stage: The system sends the right answer to the environment according
to the results of the previous stage.

Then, we define a family Π = {Π(n) : n ∈ IN} of recognizer tissue P system with
cell division from TDC(2), such that each system Π(n) will process all instances
G of HAM-CYCLE with n nodes.

For each n ∈ IN, we consider the recognizer tissue P system with cell division
from TDC(2),

Π(n) = (Γ,Σ, E ,Min,Mh,My,Myes,Mno,Mout,
Mei,j,k(1 ≤ i, j, k ≤ n),Mci(1 ≤ i,≤ n),R, iin, iout)

defined as follows:
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• The input alphabet is Σ = {(i, j)k | 1 ≤ i, j, k ≤ n}.
• The working alphabet is

Γ = {(i, j)k, (i, j)′k, (i, j)′′k , (i, j)k,r, (i, j)′k,r, (i, j)′′k,r | 1 ≤ i, j, k ≤ n ∧
1 ≤ r ≤ n3} ∪
{wi | 1 ≤ i ≤ n3 + 6} ∪ {cr, hr, yr | 1 ≤ r ≤ n3} ∪
{w, c, c′, c′′, h, h′, h′′, h′′′, y, y′y′′, y′′′, y′′′′, x, yes, no,#}

• The alphabet of the environment is:

E = {wi | 1 ≤ i ≤ n3 + 5} ∪ {w, c′′, y′′, h′′, y′′′, h′′′, y′′′′}

• Initial multisets: 

Min = cn y h
Mei,j,k = (i, j)′′k,n3 , 1 ≤ i, j, k ≤ n

Mci = cn3 , 1 ≤ i ≤ n
Mh = hn3

My = yn3

Myes = yes
Mno = wn3+6 no
Mout = x

• The set R of rules consists of the following rules:

(1) (no , wr /wr−1 , 0), for 2 ≤ r ≤ n3 + 6 .
(2) (no , w1 /w , 0).
(3) [ (i, j)k ]in → [ (i, j)′k ]in [# ]in, for 1 ≤ i, j, k ≤ n.
(4) [ (i, j)′′k,r ]ei,j,k → [ (i, j)′′k,r−1 ]ei,j,k [ (i, j)′′k,r−1 ]ei,j,k , for 1 ≤ i, j, k ≤ n and 2 ≤ r ≤ n3.
(5) [ (i, j)′′k,1 ]ei,j,k → [ (i, j)′′k ]ei,j,k [ (i, j)′′k ]ei,j,k , for 1 ≤ i, j, k ≤ n.

(6) [ cr ]ci → [ cr−1 ]ci [ cr−1 ]ci , for 1 ≤ i ≤ n ∧ 1 ≤ r ≤ n3.
(7) [ yr ]y → [ yr−1 ]y [ yr−1 ]y, for 1 ≤ r ≤ n3.
(8) [hr ]h → [hr−1 ]h [ ar−1 ]h, for 1 ≤ r ≤ n3.
(9) (in , (i, j)′k / (i, j)

′′
k , ei,j,k), for 1 ≤ i, j, k ≤ n.

(10) (in , c / c′ , ci), for 1 ≤ i ≤ n.
(11) (in , y / y′, y).
(12) (in , h / h′, h).
(13) (in, (i, j)′′k (i, j

′)′′k′ / λ, 0), for 1 ≤ i, j, j′, k, k′ ≤ n.
(14) (in, (i, j)′′k (i

′, j)′′k′ / λ, 0), for 1 ≤ i, i′, j, k, k′ ≤ n.
(15) (in, (i, j)′′k (i

′, j′)′′k+1 / λ, 0), for 1 ≤ i, i′, j, j′, k ≤ n, and j ̸= i′.
(16) (in, (i, j)′′k (i

′, j′)′′k / λ, 0), for 1 ≤ i, i′, j, j′, k ≤ n.
(17) (in , c′ / c′′ , 0).
(18) (in , y′ / y′′ , 0).
(19) (in , h′ / h′′ , 0).
(20) (in , (i, j)′′k c

′′ / λ , 0) for 1 ≤ i, j, k ≤ n.
(21) (in , y′′ / y′′′ , 0).
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(22) (in , h′′ / h′′′ , 0).
(23) (in , c′′ h′′′ / λ , 0).
(24) (in , y′′′ / y′′′′ , 0).
(25) (in , h′′′ y′′′′ / λ , yes).
(26) (yes , y′′′′ yes / λ , out).
(27) (out , x yes / λ , 0).
(28) (no , w no / λ , out).
(29) (out , x no / λ , 0).

• The input cell is iin = in.
• The output region is the environment, iout = 0.

4.3 An Overview of the Computations

A family of recognizer tissue P systems with cell division is constructed above. Let
G = (V,E), with V = {1, . . . , n} and E = {(u1, v1), . . . , (up, vp)}, be an arbitrary
instance of the HAM-CYCLE problem.

The size mapping6on the set of instances is defined as s(G) = n, and the
encoding of the instance is the multiset

cod(G) = {(ui, vi)k | 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E}

That is, (ui, vi)k denotes arc (ui, vi) “placed” in “position k”. Then the graph G
will be processed by system Π(s(G)) with input multiset cod(G).

Then, we informally describe how system Π(s(G)) with input multiset cod(G)
works, in order to process the instance G of the HAM-CYCLE problem.

At the initial configuration of Π(s(G)) + cod(G) we have the following:

• n copies of object c, objects y, h, and (ui, vi)j , for (ui, vi) ∈ E, 1 ≤ k ≤ n, in
cell labelled by in,

• Objects (i, j)′′k,n3 in cell labelled by ei,j,k.
• Objects cn3 in each cell labelled by ci, for 1 ≤ i ≤ n.
• Object hn3 in cell labelled by h, object yn3 in cell labelled by y, object yes in

cell labelled by h, objects no and wn3+6 in cell labelled by no, and object x in
cell labelled by out.

Let us start with the generation stage. This stage spends n3 steps. At this
stage, we try to generate all the possible subsets of arcs of the graph which contain
their potential positions in a path according the notations introduced in Section
4.1 (in fact, subsets of A′

G).
If C = (C0, C1, . . . ) be a computation of the tissue P system Π(n), then at

configuration Cn3 :

6 Note, for this family to be considered uniform in the sense of Boolean circuit fami-
lies [15] we may modify s so that its mapping to the number n depends only on the
length of of G. For example, if the graph G is encoded as a binary adjacency matrix,
then s(u) =

√
|u| = n.
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1. There are 2n·p cells labelled by in such that each of them contains a different
subset of A′

G = {(ui, vi)
′
k | 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E} as well as

object y, object h and n copies of object c.
2. For each i, j, k (1 ≤ i, j, k ≤ n) there are 2n

3

cells labelled by ei,j,k, each of
them only containing object (i, j)′′k .

3. For each i (1 ≤ i ≤ n) there are 2n
3

cells labelled by ci, 2
n3

cells labelled by

h, and 2n
3

cells labelled by y, only containing object c′, object h′, object y′

respectively.
4. There is a cell labelled by no, a cell labelled by yes and a cell labelled by out

such that Cn3(no) = {w6, no}, Cn3(yes) = {yes}, Cn3(out) = {x}.

Now, the checking stage starts. This stage spends 3 steps. At this stage, we
try to determine whether or not there exists a cell labelled by in which contains
a subset of A′′

G that encodes a Hamiltonian cycle of G. For that purpose, we will
use rules of types (13), (14), (15), and (16) in order to select possible paths of the
graph. After that, rules of type (20), (21), and (22) allow us to determine cells
labelled by in at configuration Cn3+3 which encode Hamiltonian cycles.

Finally, the output stage spends 3 steps if the answer is affirmative and 4 if
it is negative. At configuration Cn3+3, the existence of Hamiltonian cycles in the
graph is characterized by the absence of objects c′′ in some cell labelled by in. At
configuration Cn3+4, the previous condition is expressed by the existence of some
cell labelled by in which contains object h′′′. At configuration Cn3+5, the existence
of Hamiltonian cycles in the graph is characterized by the presence of some object
y′′′′ in cell labelled by yes. Rules of type (26), (27), (28), and (29) produce the
right answer.

5 A Formal Verification

The aim of this section is to present a formal proof on the fact that the family of
recognizer tissue P systems with cell division constructed in the previous section
solves the HAM-CYCLE problem in a uniform way and polynomial time, according
to Definition 2.4.

5.1 Polynomial Uniformity of the Family

Then, we will show that the family Π = {Π(n) | n ∈ IN} defined above is poly-
nomially uniform by Turing machines. To this aim we prove that Π(n) is built
in polynomial time with respect to the number of nodes of the instance G of the
HAM-CYCLE problem.

It is easy to check that the rules of a system Π(n) of the family are recursively
defined from n. The amount of resources needed to build an element of the family
is of a polynomial order in n, as shown below:

1. Size of the alphabet: 3n4 + 7n3 + 23 ∈ Θ(n4).
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2. Initial number of cells: n3 + n+ 6 ∈ Θ(n3).
3. Initial number of objects: |E|+ n3 + 2n+ 8 ∈ Θ(n3).
4. Number of rules: n6 + 4n5 − n4 + 7n3 + n+ 20n ∈ Θ(n6).
5. Maximal length of a rule: 2 ∈ Θ(1).

Therefore, there exists a deterministic Turing machine that builds the system
Π(n) in time polynomial with respect to n.

5.2 Soundness and Completeness of the Family

In order to show the soundness and completeness of the family Π with respect
to (HAM-CYCLE, cod, s), we describe the full contents of any cells in any instant of
each computation of the tissue Π(s(G)) + cod(G) that processes instance G.

Theorem 5.1 Let C = (C0, C1, . . . ) be a computation of the tissue P system Π(n).
For every t (1 ≤ t ≤ n · p), the configuration Ct verifies the following properties:

(1) There are 2t cells labelled by in such that each of them contains a different
subset of A′

G = {(ui, vi)
′
k | 1 ≤ i ≤ p∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E} of size lower

than or equal than t, as well as object y, object h and n copies of object c.
(2) For each i, j, k (1 ≤ i, j, k ≤ n) there are 2t cells labelled by ei,j,k each of them

only containing object (i, j)′′k,n3−t.

(3) For each i (1 ≤ i ≤ n) there are 2t cells labelled by ci, 2
t cells labelled by h, and

2t cells labelled by y, only containing object cn3−t, object hn3−t, object yn3−t

respectively.
(4) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out

such that Ct(no) = {wn3−t+6, no}, Ct(yes) = {yes}, Ct(out) = {x}.

Proof: By induction on t. Let us start analyzing the basic case t = 1.

(1) At the first step of computation C, a rule of the form [ (u0, v0)k0 ]in →
[ (u0, v0)

′
k0

]in [# ]in, with (u0, v0) ∈ E, will be applied to cell labelled by
in. Then, two new cells labelled by in will be created, each of them containing
a subset of A′

G of size lower than or equal to 1: one is (u0, v0)
′
k0

and the another
is ∅. The initial objects y, h and n copies of object c remain unchanged.

(2) For each i, j, k (1 ≤ i, j, k ≤ n), at the first step of computation C, the rule
[ (i, j)′′k,n3 ]e → [ (i, j)′′k,n3−1 ]e [ (i, j)′′k,n3−1 ]e will be applied to cell labelled by
ei,j,k. Then, two new cells labelled by ei,j,k will be created, each of them only
containing object (i, j)′′k,n3−1.

(3) For each i (1 ≤ i ≤ n), at the first step of computation C, a rule of the type
(6) is applied to cell labelled by ci. It produces two new cells labelled by ci,
each of them only containing object cn3−1.
At the first step of computation C, a rule of the type (7) is applied to the
cell labelled by y, and a rule of the type (8) is applied to cell labelled by h.
They produce two new cells labelled by y, each of them only containing object
yn3−1, and two new cells labelled by h each of them only containing the object
hn3−1.
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(4) At the first step of computation C, a rule of the type (1) is applied to the cell
labelled by no. The new content of that cell labelled by no is {wn3−1 no}. No
rule is applied neither to cell yes nor cell out.

By induction hypothesis, let t be such that 1 ≤ t < n · p and let us suppose the
result holds for t. Let us see that the result also holds for t+ 1. For this purpose,
let us notice that configuration Ct+1 is obtained from configuration Ct by applying:

• A rule of the type (3) [ (u0, v0)k ]in → [ (u0, v0)
′
k ]in [# ]in which is selected

in a nondeterministic manner among all possible applicable rules to each cell
labelled by in (there exist such rules because of t < n · p).

• For each i, j, k (1 ≤ i, j, k ≤ n), rules of the type (4) corresponding to r = n3−t
in each cell labelled by ei,j,k:

[ (i, j)′′k,n3−t ]ei,j,k → [ (i, j)′′
k,n3−t−1

]ei,j,k [ (i, j)′′k,n3−t−1 ]ei,j,k

• For each i (1 ≤ i ≤ n), rules of the type (6) corresponding to r = n3 − t in
each cell labelled by ci: [ cn3−t ]ci → [ cn3−t−1 ]ci [ cn3−t−1 ]ci .

• Rules of the type (7) corresponding to r = n3 − t in each cell labelled by y:

[ yn3−t ]y → [ yn3−t−1 ]y [ yn3−t−1 ]y

• Rules of the type (8) corresponding to r = n3 − t in each cell labelled by h:

[hn3−t ]h → [hn3−t−1 ]h [hn3−t−1 ]h

• A rule of the type (1) corresponding to r = n3 − t in cell labelled by no:

(no , wn3−t /wn3−t−1 , 0)

Therefore, the following conclusions are reached at:

(1) By induction hypothesis, in Ct there are 2t cells labelled by in, each of them
containing object y, object h, object n copies of object c, and a different subset
of A′

G with size ≤ t. Thus, when applying a rule of the type [ (u0, v0)k ]in →
[ (u0, v0)

′
k ]in [# ]in, with (u0, v0) ∈ E, we will have 2t+1 cells labelled by in

such that 2t of that cells have the same content that they had at configuration
Ct, and the rest of 2t objects (u0, v0)

′
k are added. That is, at configuration Ct+1,

we will have 2t+1 cells labelled by in, each of them containing object y, object
h, n copies of object c, and a different subset of A′

G with size ≤ t+ 1.
(2) By induction hypothesis, for each i, j, k (1 ≤ i, j, k ≤ n) in Ct there are 2t cells

labelled by ei,j,k, each of them only containing object (i, j)′′k,n3−t. By applying

rule [ (i, j)′′k,n3−t ]ei,j,k → [ (i, j)′′
k,n3−t−1

]ei,j,k [ (i, j)′′k,n3−t−1 ]ei,j,k , we will have

2t+1 cells labelled by ei,j,k, each of them only containing object (i, j)′′k,n3−t−1.

(3) By induction hypothesis, for each i (1 ≤ i ≤ n) in Ct there are 2t cells labelled
by ci, each of them only containing object cn3−t. By applying rule [ cn3−t ]ci →
[ cn3−t−1 ]ci [ cn3−t−1 ]ci we will have 2

t+1 cells labelled by ci, each of them only
containing object cn3−t−1.
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By induction hypothesis, in Ct there are 2t cells labelled by h, each of them only
containing object hn3−t, and 2t cells labelled by y, each of them only containing
object yn3−t. By applying the rules [hn3−t ]h → [hn3−t−1 ]h [hn3−t−1 ]h and
[ yn3−t ]y → [ yn3−t−1 ]y [ yn3−t−1 ]y we will have 2t+1 cells labelled by h, each
of them only containing object hn3−t−1, and 2t+1 cells labelled by y, each of
them only containing object yn3−t−1.

(4) By induction hypothesis, in Ct there is a cell labelled by no which contains ob-
ject wn3−t+6 and object no. By applying rule (no , wn3−t /wn3−t−1 , 0), it will
contain object wn3−(t+1)+6 and object no. By the way, no rules are applicable
to cells yes or out at configuration Ct.

�
From the previous proposition, we can describe the configuration Cn·p of each

computation C of Π(n).

Corollary 5.2 Let C = (C0, C1, . . . ) be a computation of the tissue P system Π(n).
Configuration Cn·p verifies the following:

(1) There are 2n·p cells labelled by in such that each of them contains a different
subset of A′

G = {(ui, vi)
′
k | 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E}, as well as

object y, object h and n copies of object c.
(2) For each i, j, k (1 ≤ i, j, k ≤ n) there are 2n·p cells labelled by ei,j,k each of

them only containing object (i, j)′′k,n3−n·p.

(3) For each i (1 ≤ i ≤ n) there are 2n·p cells labelled by ci, 2
n·p cells labelled by

h, and 2n·p cells labelled by y, only containing object cn3−n·p, object hn3−n·p,
object yn3−n·p respectively.

(4) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out
such that Cn·p(no) = {wn3−n·p+6, no}, Cn·p(yes) = {yes}, Cn·p(out) = {x}.

Theorem 5.3 Let C = (C0, C1, . . . ) be a computation of the tissue P system Π(n).
For every t (n · p+ 1 ≤ t ≤ n3), configuration Ct verifies the following:

(1) There are 2n·p cells labelled by in whose content is equal to the content of those
cells in configuration Cn·p.

(2) For each i, j, k (1 ≤ i, j, k ≤ n) there are 2t cells labelled by ei,j,k, each of them
only containing object (i, j)′′k,n3−t (by considering (i, j)′′k,0 = (i, j)′′k).

(3) For each i (1 ≤ i ≤ n) there are 2t cells labelled by ci, 2
t cells labelled by h,

and 2t cells labelled by y, only containing object cn3−t (by considering c0 = c′),
object hn3−t (by considering h0 = h′), object yn3−t (by considering y0 = y′)
respectively.

(4) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out
such that Ct(no) = {wn3−t+6, no}, Ct(yes) = {yes}, Ct(out) = {x}.

Proof: First of all, let us notice that at configuration Cn·p no rule is applicable to
any cell labelled by in, and no rule is applicable to cell labelled by yes or to cell
labelled by out.



An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division 157

Now, let us show (2), (3) and (4) by induction on t. Let us start analyzing the
basic case t = n · p+ 1.

(2) For each i, j, k (1 ≤ i, j, k ≤ n), at configuration Cn·p there are 2n·p cells labelled
by ei,j,k, each of them only containing object (i, j)′′k,n3−n·p. By applying a

rule of the type (4) we will have 2n·p+1 cells labelled by ei,j,k each of them
containing (i, j)′′k,n3−n·p−1.

(3) For each i (1 ≤ i ≤ n), at configuration Cn·p there are 2n·p cells labelled by ci,
each of them only containing object cn3−n·p. By applying a rule of the type (6)
we will have 2 · 2n·p = 2n·p+1 cells labelled by ci whose content is cn3−n·p−1.
At configuration Cn·p, there are 2n·p cells labelled by h, each of them only con-
taining object hn3−n·p, and 2n·p cells labelled by y each of them only containing
object yn3−n·p. By applying a rule of type (8) we will have 2 · 2n·p = 2n·p+1

cells labelled by h whose content is hn3−n·p−1. By applying a rule of type (7)
we will have 2 · 2n·p = 2n·p+1 cells labelled by y whose content is yn3−n·p−1.

(4) At configuration Cn·p, there is a cell labelled by no which contains object
wn3−n·p+6 and object no. By applying a rule of type (1), the new content of
that cell will be objects wn3−n·p−1+6 and no.

By induction hypothesis, let t be such that n ·p+1 ≤ t < n3 and let us suppose
the result holds for t. Let us see that the result also holds for t+ 1.

First of all, let us notice that at configuration Ct no rule is applicable to any cell
labelled by in, and no rule is applicable to cell labelled by yes nor to cell labelled
by out neither.

(2) For each i, j, k (1 ≤ i, j, k ≤ n), according to induction hypothesis at configu-
ration Ct, there are 2t cells labelled by ei,j,k, and each of them only containing
object (i, j)′′k,n3−t. By applying a rule of type (4) we will have 2t+1 cells labelled

by ei,j,k whose content is object (i, j)′′k,n3−t−1.

(3) For each i (1 ≤ i ≤ n), by induction hypothesis at configuration Ct there are 2t
cells labelled by ci, each of them only containing object cn3−t. By applying a
rule of the type (6) we will have 2 ·2t = 2t+1 cells labelled by ci whose content
is cn3−t−1.
By induction hypothesis, at configuration Ct there are 2t cells labelled by h,
each of them only containing object hn3−t, and 2t cells labelled by y, each of
them only containing object yn3−t. By applying a rule of type (8) we will have
2 ·2t = 2t+1 cells labelled by h whose content is object hn3−t−1. By applying a
rule of the type (7) we will have 2 · 2t = 2t+1 cells labelled by y whose content
is object yn3−t−1.

(4) By induction hypothesis, at configuration Ct there is a cell labelled by no which
contains object wn3−t+6 and object no. By applying a rule of the type (1) the
new content of that cell is object wn3−t−1+6 and object no.

�
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Corollary 5.4 Let C = (C0, C1, . . . ) be a computation of the tissue P system Π(n).
Configuration Cn3 verifies the following:

(1) There are 2n·p cells labelled by in such that each of them contains a different
subset of A′

G = {(ui, vi)
′
k | 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E}, as well as

object y, object h and n copies of object c.
(2) For each i, j, k (1 ≤ i, j, k ≤ n) there are 2n

3

cells labelled by ei,j,k each of
them only containing object (i, j)′′k.

(3) For each i (1 ≤ i ≤ n) there are 2n
3

cells labelled by ci, 2
n3

cells labelled by

h, and 2n
3

cells labelled by y, only containing object c′, object h′, object y′

respectively.
(4) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out

such that Cn3(no) = {w6, no}, Cn3(yes) = {yes}, Cn3(out) = {x}.

Theorem 5.5 Let C = (C0, C1, . . . ) be a computation of the tissue P system Π(n).
Configuration Cn3+1 verifies the following:

(1) There are 2n·p cells labelled by in such that each of them contains a different
subset of A′′

G = {(ui, vi)
′′
k | 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E}, as well as

object y, object h and n copies of object c.
(2) For each i, j, k (1 ≤ i, j, k ≤ n) there are 2n

3

cells labelled by ei,j,k with the
same content that at configuration Cn3 except whose cells evi,vj ,k in Cn3 which
contains objects (ui, vi)

′′
k ∈ A′′

G. At configuration Cn3+1 these objects are re-
placed by (ui, vi)

′
k respectively.

(3) For each i (1 ≤ i ≤ n) (a) there are 2n
3

cells labelled by ci from which 2n·p

only contains object c, and the rest only contains object c′, (b) there are 2n
3

cells labelled by h from which 2n·p only contains object h, and the rest only
contains object h′, and (c) there are 2n

3

cells labelled by y from which 2n·p

only contains object y, and the rest only contains object y′.
(4) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out

such that Cn3+1(no) = {w5, no}, Cn3+1(yes) = {yes}, Cn3+1(out) = {x}.

Proof: It is enough to notice that configuration Cn3+1 is reached from Cn3 by
applying:

• Rules of type (9) (from this follows (1) and (2)).
• Rules of type (10), (11), (12) and (1) (from this follows (3) and (4)).

1. Let us remark that at the (n3 + 1)th step, we have replaced objects (ui, vi)
′
k,

with 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n, from cells labelled by in, by the respective objects
(ui, vi)

′′
k from cells labelled by eui,vi,k. Let us recall that at configuration Cn3

we had 2n·p−1 copies of objects (ui, vi)
′
k, for each 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n

in cells labelled by in. Therefore, we need 2n·p−1 copies of objects (ui, vi)
′′
k in

cells labelled by eui,vi,k, but at configuration Cn3 we had 2n
3

copies of cells
labelled by eui,vi,k, each of them only containing object (ui, vi)

′′
k .
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2. Let us remark that at the (n3 +1)th step we have replaced m copies of object
c in cell labelled by in by m respective copies of object c′ from cells labelled
by ci (1 ≤ i ≤ n). Then we need n · 2n·p copies of object c′ in cells labelled

by ci. Let us recall that in total we had n · 2n3

cells labelled by ci, each of
them only containing object c′. The same applies to objects h′ and y′ in cells
labelled by h and y respectively.

�

Theorem 5.6 Let C = (C0, C1, . . . ) be a computation of the tissue P system Π(n).
Configuration Cn3+2 verifies the following:

(1) There are 2n·p cells labelled by in such that each of them contains object y′′,
object h′′, n copies of object c′′, and a different subset of

A′′
G = {(ui, vi)

′′
k | 1 ≤ i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E}

of the form {(uα1 , vα1)
′′
q1 , (uα2 , vα2)

′′
q2 , . . . , (uαr , vαr )

′′
qr}, where

q1 < q2 < . . . < qr ∧ r ≤ n ∧ (qi+1 = qi + 1 ⇒ vαi = uαi+1)

Moreover, each subset of A′′
G verifying the previous conditions is contained

inside some cell labelled by in.
(2) Cells labelled by ei,j,k, ci, h, and y have the same content than at configuration

Cn3+1.
(3) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out

such that Cn3+2(no) = {w4, no}, Cn3+2(yes) = {yes}, Cn3+2(out) = {x}.

Proof: It is enough to notice that configuration Cn3+1 yields Cn3+2 by applying
rules of types (13), (14), (15), (16) and (1).

The first four rules are symport rules. Thus,at configuration Cn3+2 we will have
2n·p cells labelled by in in such manner that the subsets B of A′′

G contained in
each of them must verify the following conditions:

(u, v)′′k ∈ B ∧ (u′, v′)′′k′ ∈ B ∧ (u, v)′′k ̸= (u′, v′)′′k′ ⇒ u ̸= u′ (rule (13)).
(u, v)′′k ∈ B ∧ (u′, v′)′′k′ ∈ B ∧ (u, v)′′k ̸= (u′, v′)′′k′ ⇒ v ̸= v′ (rule (14)).
(u, v)′′k ∈ B ∧ (u′, v′)′′k′ ∈ B ∧ (u, v)′′k ̸= (u′, v′)′′k′ ⇒ k ̸= k′ (rule (16)).
(u, v)′′k ∈ B ∧ (u′, v′)′′k+1 ∈ B ⇒ v = u′ (rule (15)).

Moreover, let us recall that at configuration Cn3+1, every subset B of A′′
G is con-

tained inside a different cell labelled by in. Therefore, each subset B of A′′
G verifying

the previous conditions will be contained inside one unique cell labelled by in at
configuration Cn3+2.

�
Remark: From Proposition 4.2, we deduce that a subset B from A′′

G represents
a Hamiltonian cycle of G if and only if |B| = n and B satisfies the conditions
(α), (β), (γ), (δ). Thus, to determine whether or not graph G has a Hamiltonian
cycle will be equivalent to determine whether or not in some cell of configuration
Cn3+2 labelled by in there exists a subset B from A′′

G whose cardinality is n.
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Theorem 5.7 Let C = (C0, C1, . . . ) be a computation of the tissue P system Π(n).
Configuration Cn3+3 verifies the following:

(1) There are 2n·p cells labelled by in such that each of them contains a copy of ob-
ject y′′′ and a copy of object h′′′. Besides, if a subset B ⊆ A′′

G = {(ui, vi)
′′
k | 1 ≤

i ≤ p ∧ 1 ≤ k ≤ n ∧ (ui, vi) ∈ E} contained in a cell labelled by in has exactly
n elements, then no object c′′ appears inside that cell. Otherwise, inside any
cell labelled by in which contains a subset B ⊆ A′′

G, some objects c′′ (exactly
n− t1 copies, where t1 is the size of the subset B) will remain.

(2) Cells labelled by ei,j,k, ci, h, and y have the same content than at configuration
Cn3+1.

(3) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out
such that Cn3+3(no) = {w3, no}, Cn3+3(yes) = {yes}, Cn3+3(out) = {x}.

Proof: It is enough to notice that configuration Cn3+2 yields Cn3+3 by applying
rules of types (20), (21), (22), and (1).

By applying rules of types (21) and (22), objects h′′ and y′′ evolve to h′′′ and
y′′′ respectively.

By applying rules of type (20), for each element (u, v)′′k in the set encoded by
that cell, one object c′′ will be consumed.

By applying a rule of type (1), object w4 evolves to object w3.
�

Corollary 5.8 Let C = (C0, C1, . . . ) be a computation of the tissue P system Π(n).
The following assertions are equivalent:

• Graph G has a Hamiltonian cycle.
• At configuration Cn3+3, there is, at least, a cell labelled by in such that it does

not contain any object c′′.

Proof: It suffices to notice that, at configuration Cn3+2, Hamiltonian cycles are
characterized by membranes labelled by in which contain a subset of A′′

G of size
n. Then, by using a rule of type (20), at configuration Cn3+3 Hamiltonian cycles
are characterized by membranes labelled by in such that they do not contain any
object c′′.

Theorem 5.9 Let C = (C0, C1, . . . ) be a computation of the tissue P system Π(n).
Configuration Cn3+4 verifies the following properties:

(1) There are 2n·p cells labelled by in such that each of them contains one copy of
objects y′′′′. Besides, if object c′′ appeared in some cell labelled by in at con-
figuration Cn3+3, then that copy of c′′ and object h′′′ are released out to the
environment. Otherwise, object h′′′ will remain inside that cell in at configu-
ration Cn3+4.

(2) Cells labelled by ei,j,k, ci, h, and y have the same content than at configuration
Cn3+1.
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(3) There is a cell labelled by no, a cell labelled by yes and a cell labelled by out
such that Cn3+4(no) = {w2, no}, Cn3+4(yes) = {yes}, Cn3+4(out) = {x}.

Proof: It is enough to notice that configuration Cn3+3 yields Cn3+4 by applying
rules of types (23), (24), and (1).

By applying rules of type (23), object h′′ and a copy of object c′′ (if any in a
cell labelled by in) will be released to the environment.

By applying a rule of type (24), object y′′′ evolves to object y′′′′.
By applying a rule of type (1), object w3 evolves to object w2.

�

Corollary 5.10 Let C = (C0, C1, . . . ) be a computation of the tissue P system
Π(n). The following assertions are equivalent:

• Graph G has a Hamiltonian cycle.
• At configuration Cn3+4, there is, at least, a cell labelled by in at configuration

Cn3+4 such that it contains an object h′′′.

Besides, graph G has exactly q Hamiltonian cycles if and only if there are exactly
n · q cells labelled by in such that at configuration Cn3+4, it contains an object h′′′.

Proof: It suffices to notice that, at configuration Cn3+3, Hamiltonian cycles are
characterized by membranes labelled by in such that they do not contain any
object c′′. Then, a rule of type (23) will be applicable to each cell labelled by in
that contains some object c′′. In this case, at configuration Cn3+4, object h

′′′ will
only appear at membranes labelled by in which encode Hamiltonian cycles.

Theorem 5.11 Let C = (C0, C1, . . . ) be a computation of the tissue P system
Π(n). Configuration Cn3+5 verifies the following:

(1) There are 2n·p cells labelled by in such that each of them contains one copy of
objects y′′′. Besides, if object h′′′ appeared in some cell labelled by in at config-
uration Cn3+4, then object h′′′ together with object y′′′ are sent to cell labelled
by yes. Otherwise, that cell in remain unchanged at the next configuration.

(2) Cells labelled by ei,j,k, ci, h, and y have the same content than at configuration
Cn3+1.

(3) There is a cell labelled by no such that: Cn3+5(no) = {w1, no}.
(4) There is a cell labelled by yes which contains either only object yes, or n · q

copies of objects y′′′′ and n · q copies of objects h′′′, and object yes, being q the
total number of Hamiltonian cycle of G. Besides, there is a cell labelled by out
which contains only object x.

Proof: It is enough to notice that configuration Cn3+4 yields Cn3+5 by applying
rules of types (23), (24), and (1).

By applying rules of type (25) to each cell labelled by in that encodes a Hamil-
tonian cycle, object h′′′ and a copy of object c′′ will be released to the environment.
If G has exactly q Hamiltonan cycles, then there are exactly n · q cells labelled by
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in that encodes a Hamiltonian cycle. In this case, the contents of cell labelled by
yes will be n · k copies of object y′′′′, n · k copies of object h′′′ and object yes.

By applying a rule of type (1), object w2 evolves to object w1 in cell labelled
by no.

�

Corollary 5.12 Let C = (C0, C1, . . . ) be a computation of the tissue P system
Π(n). The following assertions are equivalent:

• Graph G has a Hamiltonian cycle.
• At configuration Cn3+5, cell labelled by yes has, at least, a copy of object y′′′′

and a copy of object yes.

Besides, graph G has exactly q Hamiltonian cycles if and only if at configuration
Cn3+5, the cell labelled by yes has exactly n · q copies of objects y′′′ and a copy of
object yes.

Proof: It suffices to notice that, at configuration Cn3+4, Hamiltonian cycles are
characterized by membranes labelled by in which contain object h′′′. Then, a rule
of type (25) will be applicable to these cell, producing object h′′′′ in the cell labelled
by yes.

Theorem 5.13 Let C = (C0, C1, . . . ) be a computation of the tissue P system
Π(n). Configuration Cn3+6 verifies the following:

(1) Cells labellled by in, ei,j,k, ci, h, and y have the same content than at config-
uration Cn3+5.

(2) There is a cell labelled by no which contains object w and object no.
(3) There is a cell labelled by yes which contains either only object yes (in this

case there is a cell labelled by out which contains only object x), or contains
n · q − 1 copies of objects y′′′′ and n · q copies of objects h′′′, being q the total
number of Hamiltonian cycles of G (in this case, there is a cell labelled by out
which contains object y′′′′, object yes and object x).

Proof: It is enough to notice that configuration Cn3+5 yields Cn3+6 by applying
rules of types (26) and (2).

If there is, at least, an object y′′′′ in cell labelled by yes, then by applying
rule (26), a copy of object y′′′′ and object yes are sent to the cell labelled by out.
Otherwise, that rule is not applicable to cell yes.

In any case, by applying rule (2) to cell labelled by no, object w1 evolves to
object w.

�

Corollary 5.14 Let C = (C0, C1, . . . ) be a computation of the tissue P system
Π(n). The following assertions are equivalent:

• Graph G has a Hamiltonian cycle.



An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division 163

• At configuration Cn3+6, cell labelled by out has a copy of object yes and a copy
of object x.

Proof: It suffices to notice that, at configuration Cn3+5, Hamiltonian cycles are
characterized by the following condition: cell labelled by yes contains objects h′′′′

and yes. Then, a rule of type (26) is applicable to cell labelled by yes sending
these objects to the celll labelled by out.

Theorem 5.15 Let C = (C0, C1, . . . ) be a computation of the tissue P system
Π(n). Configuration Cn3+7 verifies the following properties:

(1) Cells labelled by in, ei,j,k, ci, h, y, and yes have the same content than at
configuration Cn3+6.

(2) If G has a Hamiltonian cycle, then Cn3+7(no) = ∅, Cn3+7(yes) = {h′′′},
Cn3+7(out) = {y′′′′, w, no}, and yes, x ∈ Cn3+7(0). The configuration Cn3+7

is a halting configuration. Moreover, it is an accepting configuration.
(3) If G doesn’t have a Hamiltonian cycle, then Cn3+7(no) = ∅, Cn3+7(yes) =

{yes}, Cn3+7(out) = {w, no, x}.

Proof: It is enough to notice that configuration Cn3+6 yields Cn3+7 by applying
rules of the type (27), in the case that G has a Hamiltonian cycle, and (28) in
any case. Besides, by applying rule of type (27) objects x and yes are sent to the
environment. Thus, x /∈ Cn3+7(out) and the rule of type (29) will not be applicable
at the next step. Hence, configuration Cn3+7 is an accepting configuration.

�

Theorem 5.16 Let C = (C0, C1, . . . ) be a computation of the tissue P system
Π(n). Let us suppose that G doesn’t have a Hamiltonian cycle, then configuration
Cn3+8 verifies the following:

(1) Cells labelled by in, ei,j,k, ci, h, y, no and yes, have the same content than at
configuration Cn3+7.

(2) Cn3+8(no) = ∅, Cn3+8(yes) = {yes}, Cn3+8(out) = {w}, and no, x ∈ Cn3+8(0).
The configuration Cn3+8 is a halting configuration. Moreover, it is a rejecting
configuration.

Proof: It is enough to notice that if G doesn’t have a Hamiltonian cycle, then
configuration Cn3+8 is reached from Cn3+7 by applying the rule of type (29).

�

Corollary 5.17 The family Π defined at Section 4.2 is polynomially bounded with
regard to (HAM-CYCLE, cod, s).

Proof: From Theorem 5.15 and Theorem 5.16, we deduce that any computation
C of the tissue P system Π(n) spends n3 + 7 or n3 + 8 transition steps, for each
n ∈ IN.

�



164 A.E. Porreca, N. Murpy, M.J. Pérez-Jiménez

Corollary 5.18 The family Π defined at Section 4.2 is sound and complete with
regard to (HAM-CYCLE, cod, s)

Proof: Let G be a directed graph that has a Hamiltonian cycle. Let C be an
arbitrary computation of Π(s(G)) + cod(G). From Theorem 5.15, we deduce that
C is an accepting computation.

Now, let G be a directed graph such that there exists an accepting computation
C of Π(s(G))+cod(G). Then, G has a Hamiltonian cycle. Otherwise, computation
C must be a rejecting computation according to Theorem 5.16.

�

Theorem 5.19 HAM-CYCLE ∈ PMCTDC(2).

Proof: The family of tissue P systems with cell division constructed in Subsection
4.2 verifies the following:

(a) Every system of the family Π is a recognizer tissue P system with cell division
and communication rules with length at most 2.

(b)The family Π is polynomially uniform by Turing machines (Subsection 5.1).
(c) The pair (cod, s) of polynomial–time computable functions defined in Subsec-

tion 4.3 verifies: for each instance G of HAM-CYCLE, s(G) is a natural number,
cod(G) is an input multiset of the system Π(s(G)), and for each n ∈ IN, s−1(n)
is a finite set.

(d)The family Π is polynomially bounded with regard to (HAM-CYCLE, cod, s)
(Corollary 5.17).

(e) The family Π is sound and complete with regard to (HAM-CYCLE, cod, s) (Corol-
lary 5.18).

Therefore, according to Definition 2.4, the uniform family Π of tissue P systems
constructed in Section 4 solves the HAM-CYCLE problem in polynomial time with
respect to the number of variables and the number of clauses.

�

Corollary 5.20 NP ∪ co-NP ⊆ PMCTDC(2).

Proof: It suffices to notice that the HAM-CYCLE problem is NP-complete,
HAM-CYCLE∈ PMCTDC(2), and this complexity class is closed under polynomial-
time reduction and under complement.

�

6 Conclusions

The length of communication rules plays a relevant role for tissue P systems with
cell division from the efficiency point of view. A uniform and efficient solution to the
Vertex Cover problem by using a family of tissue P systems with cell division and
communication rules of length at most 3 was given in [1]. By using the dependency
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graph technique of cell–like P systems, it was shown that only tractable problems
can be efficiently solved by using families of tissue P systems with cell division
and communication rules of length 1 [3]. Hence, assuming that P ̸= NP, in the
framework of tissue P systems with cell division, passing from communication rules
of length 1 to communication rules of length at most 3 amounts to passing from
non–efficiency to efficiency.

In this paper, that borderline of efficiency has been optimized by proving that
a well known NP–complete problem, the HAM-CYCLE problem, can be solved in a
uniform and efficient way, by using a family of tissue P systems with cell division
and communication rules of length at most 2.

In [7], cell separation rules were introduced into tissue P systems (inspired
by the cellular fission) and their computational efficiency was investigated. Two
important results were obtained in that framework: (a) only tractable problems can
be efficiently solved by using cell separation and communication rules with length
at most 1, and (b) a uniform and linear time solution to the SAT problem by using
cell separation and communication rules with length at most 8 was presented.
Recently [14] this result was improved by showing a family of tissue P systems
with cell separation and communication rules with length at most 3, solving the
SAT problem in a uniform way and linear time.

Now, we propose three open problems related to the efficiency of tissue P
systems:

(a) What is the computational efficiency of tissue P systems with cell separation
which allow communication rules with length at most 2?

(b)What happens if only symport (or only antiport) rules are allowed in tissue P
systems with cell division or cell separation?

(c) At the initial configuration of a tissue P system the symbols of the alphabet E
appear in the environment in an arbitrary number of copies. We can consider
tissue P systems without environment, that is, tissue P systems where alpha-
bet E is empty. What is the relationship between the polynomial complexity
classes of tissue P systems with cell division (or with cell separation) and the
corresponding tissue P systems without environment?
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