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Abstract Membrane systems with dividing and dissolving membranes
are known to solve PSPACE problems in polynomial time. However,
we give a P upperbound on an important restriction of such systems. In
particular we examine systems with dissolution, elementary division and
where each membrane initially has at most one child membrane. Even
though such systems may create exponentially many membranes, each
with different contents, we show that their power is upperbounded by P.

1 Introduction

Bacteria and other cells provide an interesting avenue to consider in Natural
Computing. Their native ability to make copies of themselves inspires us with
visions of exponentially multiplying processors churning away, solving intractable
problems. But can cells actually solve such hard problems? To answer this we
should abstract away from the mind-boggling intricacy of a living cell and create
a model that strips away everything but the features that we want to analyse.

The model we investigate is called active membrane systems [9], a variant
of P systems [10]. Active membrane systems were introduced to analyse the
computational complexity of nested membranes that have the ability to divide
and dissolve. It was shown by Sośık [11] that the model was extremely powerful
and could solve problems as quickly as parallel machines that satisfy the parallel
computation thesis. Later Sośık and Rodŕıguez-Patón showed [12] that the model
was no more powerful than such parallel machines. This result holds for a very
general definition of active membrane systems and so can be interpreted as an
upperbound on systems with dividing and dissolving membranes.

These results used non-elementary division, that is, when a membrane di-
vides, all sub-membranes are copied. For several years a tighter upperbound
(or lowerbound) has been sought for the model where only membranes with
no sub-membranes may divide. This would close an open problem known as
the P conjecture which states that active membrane systems without charges
characterise P [8].

However, the proof has been elusive (see Mauri et al. [3] for a more detailed
survey). While attempting to answer this conjecture it was discovered that mem-
brane dissolution was a powerful aspect of the system when it was found that
without dissolution the system was upperbounded by P [1]. It is also known



that systems without division rules are upperbounded by P [13]. This highlights
that membrane dissolution when combined with division are the most difficult
aspects of the model.

A restriction of the model that uses symmetric cell division, where the two
resulting membranes are identical, was shown to solve no more than P [5]. In this
paper we analyse the more general division rule where two resulting membranes
of a division may be different (in a manner similar to the mechanism of stem
cells) combined with dissolution rules.

Our result gives a P upperbound on systems with dissolution and elementary
division, where at the initial timestep, the depth of membrane nesting is equal
to the total number of membranes. In the notation of membrane systems, this
may be stated as follows.

Theorem 1. PMC∗D ⊆ P, where D is the class of systems in AM0
+d,−ne,−e,−c

having an initial membrane structure that is a single path.

While all the machinery is in place for a proof for a membrane structure that
(initially) is a tree, we leave the full proof to a more complete version of the
paper and only consider here the case where the structure is initially a single
path.

Our simulation algorithm does not explicitly simulate all (of the exponential
number of) membranes. Even though these systems may create exponentially
many membranes, each with different contents, we observe that the elementary
membranes are only important to simulate if they release a dissolution object to
a parent membrane, or some other ancestor.

To prove our main result we use a number of simulation techniques. The main
novelties in our approach are the following. We carefully choose a computation
to simulate: the membrane systems we simulate are confluent (nondeterminis-
tic, but all computations produce the same answer), and our technique finds a
sufficiently simple computation to simulate out of a large set of more compli-
cated computations. Also, we model important aspects of the computation using
special division graphs that are inspired by, and a generalisation of, dependency
graphs. Finally, our simulation algorithm carefully selects a small number of
important membranes to explicitly simulate, while ignoring up to exponentially
many other membranes. This technique is nicer than a brute force approach as it
highlights which aspects of the computation actually influence the answer, and
which do not.

Although our main motivation is the P conjecture, our work has applications
for membrane system simulators. For previous P upperbounds, this point could
perhaps be more difficult to argue since such upperbounds on membrane sys-
tems often have large hidden constants. However given a membrane system that
creates an exponential number of membranes, our algorithm actually explicitly
simulates very few membranes (less than double the number of membranes that
are in the initial configuration).

Unlike some previous techniques, we feel that the present approach will be
fruitful for proving the P conjecture for systems that have dissolution, elementary
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division, evolution and communication rules. Our technique seems suitable for
generalisation, and does not suffer from a combinatorial explosion of cases.

What is the lowerbound on the power of the systems that we consider? If P
uniformity is used, then we get a trivial P lowerbound [6]. However for uniformity
that is tighter than P (e.g. AC0 or L), then we conjecture that a P lowerbound
can be found by improving a result in [6].

2 Membrane Systems

In this section we define membrane systems and some complexity classes. These
definitions are based on those from Pérez-Jiménez et al. [2], Păun [9,10], Sośık
and Rodŕıguez-Patón [12], and Murphy and Woods [4].

2.1 Active membrane systems

Active membrane systems are a class of membrane systems with membrane di-
vision rules. In this paper, division rules can act only on elementary membranes,
which are membranes that do not contain other membranes (and are represented
as leaves in the membrane structure tree).

Definition 2. An active membrane system without charges is a tuple Π =
(O,H, µ,w1, . . . , wm, R) where,

1. m ≥ 1 is the initial number of membranes;
2. O is the alphabet of objects;
3. H is the finite set of labels for the membranes;
4. µ is a tree that represents the membrane structure, consisting of m nodes,

labelled with elements of H. The root node (representing the parent of all
membranes) is called the “skin” and has label 1 ∈ H;

5. w1, . . . , wm are strings over O, describing the multisets of objects placed in
the m regions of µ.

6. R is a finite set of developmental rules, of the following forms:
(a) [ a → u ]h, for h ∈ H, a ∈ O, u ∈ O∗ (object evolution)
(b) a[ ]h → [ b ]h, for h ∈ H, a, b ∈ O (communication in)
(c) [ a ]h → [ ]h b, for h ∈ H, a, b ∈ O (communication out)
(d) [ a ]h → b, for h ∈ H, a, b ∈ O (membrane dissolution)
(e) [ a ]h → [ b ]h [ c ]h, for h ∈ H, a, b, c ∈ O (elementary membrane division)

The semantics of these rules are described elsewhere [10], however we note that
they are applied according to the following principles:

– All the rules are applied in a maximally parallel manner. That is, in one
step, one object of a membrane is used by at most one rule (chosen in a
non-deterministic way), but any object which can evolve by one rule of any
form, must evolve.

– The rules associated with membranes labelled with h are used for membranes
with that label. At one step, a membrane can be the subject of only one rule
of types (b)–(e), although in this paper we use only rules of type (d) and (e).
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2.2 Recogniser membrane systems

We recall [1] that a computation of a membrane system is a sequence of config-
urations such that each configuration (except the initial one) is obtained from
the previous one by a transition (one-step maximally parallel application of the
rules). Systems are nondeterministic, therefore on a given input there are mul-
tiple possible computations.

Definition 3 ([1]). A recogniser membrane system is a membrane system where
each computation outputs either object yes or no (to the membrane with label 1).
When this output occurs, no other rules are applicable.

2.3 Complexity classes

Consider a decision problem X, i.e. a set of instances X = {x1, x2, . . .} over
some finite alphabet such that to each xi there is a unique answer “yes” or “no”.
We say that a family of membrane systems solves a decision problem if each
instance of the problem is solved by some family member. We let |x| denote the
length of x. In this paper, the functions classes E,F,H are each contained in the
class of functions that are polynomial time computable on deterministic Turing
machines.

Definition 4. Let D be a class of membrane systems, let E and F be classes of
functions, and let t : N → N be a total function. The class of problems solved
by (E,F )-uniform families of membrane systems of type D in time t, denoted
(E,F )–MCD(t), contains all problems X such that:

– There exists an f -uniform family of membrane systems,
ΠX = {ΠX(1), ΠX(2), . . .} of type D: that is, there exists a function f ∈ F ,
f : {1}∗ → ΠX such that f(1n) = ΠX(n).

– There exists an input encoding function e ∈ E, e : X → Σ∗ where e(x) rep-
resents the input multiset (as a word), which is placed in the input membrane
of ΠX(n).

– The pair ΠX , e is sound and complete with respect to X: ΠX(n) given the
encoded input e(x), where |x| = n, accepts iff the answer to x is “yes”.

– ΠX is t-efficient: ΠX(n) always halts in at most t(n) steps.

Definition 4 describes (e, f)-uniform family (i.e. with input) and we
generalise this to define (h)-semi-uniform family of membrane systems ΠX =
{ΠX(x1), ΠX(x2), . . .} where there exists a function h ∈ H, h : X → ΠX such
that h(x) = ΠX(x). Here a single function (rather than two) is used to construct
the semi-uniform membrane family, and so the problem instance is encoded us-
ing objects, membranes, and rules. In this case, for each instance of x ∈ X we
have a (possibly unique) membrane system. The resulting class of problems is
denoted by (H)–MC∗D(t). We define

(E,F )–PMCD =
⋃
k∈N

(E,F )–MCD(nk),
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(H)–PMC∗D =
⋃
k∈N

(H)–MC∗D(nk).

We let AM0
+d,−ne,−e,−c denote the class of active membrane systems without

charges and using only dissolution and elementary division rules. Theorem 1 is
shown for such (polynomial time) systems. For consistency with the membrane
systems literature (which often uses P uniformity and semi-uniformity), we sim-
ply write PMCD and PMC∗D when E,F,H are classes of functions that are
polynomial time computable on deterministic Turing machines. The results in
this paper hold for P, or tighter, uniformity and semi-uniformity.

Remark 5. A recogniser membrane system is confluent if it is both sound and
complete. That is a ΠX is confluent if all computations of ΠX , with the same
encoded input, give the same result.

Therefore the following interpretation holds: in a confluent membrane system,
given a fixed initial configuration, the system non-deterministically chooses one
from a number of valid computations, but all computations must lead to the
same result, either all accepting or all rejecting.

2.4 Notation

For a membrane system Π we define ∆i = {δ | [δ]i → o is a rule in Π, o ∈ O, i ∈
H}. In other words, ∆i is the set of objects that are on the left hand side of a rule
that dissolves a membrane with label i. Also, ∆1 = {yes, no}, and ∆ = ∪i∈H∆i.
The parent of a membrane with label i is denoted p(i). We often explicitly write
the contents of a multiset as a vector C of multiplicities, as shown in Section 4.4.

3 Object division graphs

We introduce object division graphs which represent all divisions that result
from a given object and membrane label. We use the notion of dependency
graph [1], a directed acyclic graph previously used to represent non-dissolution
rules [i.e. types (a), (b), (c), and (e)]. Given a (properly encoded) set of rules for
a membrane system Π, the dependency graph GΠ is created in logspace [6]. An
object division graph is a directed acyclic graph Gdiv(o,h) that is the dependency
graph for division rules only (ignoring all other rules), and that contains only
those nodes and edges that are on paths leading from (o, h). We can also define
an object division graph as follows. For each division rule [ oi ]h → [ oj ]h[ ok ]h
we define the three nodes {oi,h, oj,h, ok,h} and the two edges (oi,h, oj,h) and
(oi,h, ok,h). Then, the object division graph Gdiv(o`,h) is the subgraph that is
reachable from the node o`,h.

For example, Figure 1 shows four object division graphs (each is contained
in a ‘cloud’). The three rules that gave rise to the leftmost object division graph
(rooted at a) are as follows, [ a ] → [ b ][ c ], [ b ] → [ δp(hmax) ][ e ], [ c ] → [ e ][ δ3 ].
(All membranes are labeled hmax and this label is omitted for brevity.)
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For each element of O × H the simulation algorithm creates such a graph.
By Lemma 8, we are simulating a membrane system Π where division is de-
terministic in the sense that for a given (object, label) pair, there is at most
one applicable division rule. From this, and Lemma 7 it can be seen that each
non-leaf vertex in Gdiv(o,h) has out-degree 2. Also, from the fact that division
rules do not change membrane labels, a single object division graph encodes a
set of rules, where each rule in the set has the same label.

4 Simulation

Here we prove our main result, Theorem 1.

Theorem 1 PMC∗D ⊆ P, where D is the class of systems in AM0
+d,−ne,−e,−c

having an initial membrane structure that is a single path.

We give a polynomial time algorithm that takes as input a membrane system Π
from the class AM0

+d,−ne,−e,−c, which has a membrane structure that is a single
path, as well as Π’s input. The simulation algorithm begins with the (relatively
easy) task of simplifying Π using Lemmas 6, 7 and 8. Then, the step-by-step
simulation uses the algorithms given from Section 4.2 onwards.

4.1 Normal Forms and simplifications

The algorithm begins the simulation by simplifying the membrane system as
follows.

Lemma 6 (Normal form: unique labels at initial step). Given a mem-
brane system Π with multiple membranes of the same label at the initial configu-
ration, this can be converted (in time quadratic in the size of Π) to a membrane
system Π ′ where each membrane has a unique label that accepts w iff Π does.

Proof. We can iterate the following algorithm until each membrane has a unique
label. For each membrane of label h, give the ith membrane a new label hi, and
create a new set of rules that is identical to the set of rules that make use of
label h, except h is replaced by hi in each rule. The algorithm runs in polynomial
time, since both the set of rules R and labels H are of polynomial size. ut

Thus we can assume that each membrane has a unique label from {1, . . . , |H|}
in the initial configuration of the membrane system, labelled sequentially from
the root 1, to leaf |H|.

Lemma 7 (Normal form: removing symmetric division rules). Given a
membrane system Π, it can be converted (in polynomial time in the size of Π)
to a membrane system Π ′ where all division rules are asymmetric, that is each
division rule is of the form [ o1 ]i → [ o2 ]i[ o3 ]i, and o2 6= o3.
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Proof. The rules in Π ′ are the same as those Π, with the following exception.
Each symmetric division rule [ o1 ]i → [ o2 ]i[ o2 ]i in Π is replaced by an asym-
metric division rule [ o1 ]i → [ o2 ]i[ o′2 ]i in Π ′. We add the following: for each
rule with o2 on the left hand side, we create an extra rule which is the same
except it has o′2 on the left hand side. ut

Lemma 8 (Normal form: removing nondeterminism on left-hand sides
of the rules). Suppose there is more than one rule for a given object o ∈ O and
label h ∈ H in membrane system Π. Let Π ′ be identical to Π, except that we
have exactly one of these rules (arbitrarily chosen) for each pair (o, h).

That is, given any o ∈ O, for each h ∈ H there is at most rule: either one
division rule of the form [ o ]h → [ b ]h[ c ]h with o on the left hand side, or one
dissolution rule of the form [ o ]h → u with o on the left hand side.

The resulting membrane system Π ′ accepts input word w if and only if Π
accepts w.

Proof. Assuming that Π is a recogniser, we know (by definition) that given an
input w either all computations accept it (yielding “yes” as output), or else none
of the computations accept it (the output is always “no”). The proof follows from
the observation that all computations of Π ′ are also computations of Π, since
every time that it is possible to apply several rules of types (d) or (e) on a
membrane labelled by h we must choose exactly one such rule (see Definition 2).
This means that when Π is running a computation and is in a situation where
there is an object o in a membrane labelled by h, it nondeterministically chooses
the single rule that Π ′ has for the pair (o, h). ut

The input membrane system has now been simplified (within polynomial
time) and we begin the simulation assuming these normal forms.

4.2 Simulating, and avoiding, division

The simulation algorithm classifies the system into one of Cases 0, 1, 2, or 3,
depending on the contents of the membrane with greatest label hmax (hmax = |H|
in the first timestep).

If the system fits Cases 0 or 1 then we simulate a valid computation where all
membranes with label hmax (eventually) dissolve, and moreover in a way that can
be simulated. This reduces the depth of the membrane structure by 1. Then, the
algorithm restarts, and once again classifies the system into one of the 4 cases. If
we only ever encounter Cases 0 and 1 then a straightforward inductive argument
can be used to give prove the correctness of our simulation.

In either of Cases 2 or 3, we select a computation where there are mem-
brane(s) of label hmax that never dissolve. In these cases, the sub-system with
labels {1, . . . , p(hmax)} is non-elementary for all time ≥ t, and the algorithm
in Section 4.4 is used to simulate this sub-system. For Case 2 simulation of
the elementary membranes is relatively straightforward. However, for Case 3 a
more sophisticated simulation algorithm for elementary membranes is given in
Section 5.
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These four cases give full coverage in the sense that any valid configuration
is represented by one of the cases, and this can be seen by a careful examination
of Lemmas 9 to 12.

4.3 Case 0

Lemma 9 (Case 0). At timestep t, if the single membrane of label hmax con-
tains an object δ where δ ∈ ∆hmax , then there is a polynomial time simulation of
the system from time t to t+ 1.

Proof. We simulate the computation where dissolution is chosen (has priority)
over division. If there are multiple such δ, we choose the lexicographically first
one. The algorithm given below in Section 4.4 is then used for the simulation of
the dissolution rule on hmax, and likewise for any applicable dissolution rule on
membranes of label < hmax for one timestep.

Then the simulation algorithm returns to the beginning (of Section 4.2), to
find which of Cases 0, 1, 2, or 3 is applicable for timestep t+ 1. ut

4.4 Simulation algorithm for dissolution only

In this section we give a polynomial time simulation for the case where there
are only dissolution rules. This could also be shown via Theorem 3 from Zan-
dron et al. [13], but we instead give an explicit simulation that is useful in our
constructions.

Suppose there are h membranes with distinct labels {1, . . . , h} at some time t
(initially, t = 0). At time t, the simulation algorithm encodes the contents of each
membrane as a vector. Specifically, for each membrane of label i ∈ {1, . . . , h},
the multiset contents are encoded explicitly as

Ci,0 =
〈
|i|o1 , |i|o2 , . . . , |i|o|O|

〉
where |i|oj

is the multiplicity of oj ∈ O in the membrane with label i. Also,
for all t′ > t, Ci,t′ = 〈0, 0, . . . , 0〉. For all time t, the system has a polynomial
number of labels so the vectors Ci,t can be written out by a polynomial time
Turing machine.

The system uses only dissolution rules, thus it is straightforward to find
the contents of Ci,t+1, for each i, in polynomial time, as follows. Initially, let
Ci,t+1 = 〈0, 0, . . . , 0〉. Then, for each i, from h down to 1, check the vector Ci,t
to see if |i|δ > 0, where δ ∈ ∆i (i.e. check if Ci,t contains a non-zero value for
any δ ∈ ∆i):

– if so, add Ci,t−δ+x to Cp(i),t+1 (where [δ]i → x is the simulated dissolution
rule, and if there are multiple such δ, we choose the lexicographically first),3

– if not add Ci,t to Ci,t+1.

3 Here the notation Ci,t− δ+x means remove one copy of δ from C and add one copy
of x to Ci,t (i.e. we let δ, x be vectors that encode the symbols δ, x).
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The algorithm should take care of the important detail where, in one step, the
dissolution occurs of multiple membranes with consecutive labels. If the (skin
membrane) vector C1,t′ , for any t′, encodes the object yes (respectively, no) then
the simulation is finished and we accept (respectively, reject).

The computation that we are simulating for these membranes should be clear
from the algorithm, so we omit a proof of correctness (which would proceed by
a simple inductive argument on membrane contents).

4.5 Cases 1 and 2

Lemma 10 (Case 1). At timestep t, if the single membrane of label hmax con-
tains an object o where the object division graph Gdiv(o,hmax) has the property
that every sink node is in ∆hmax , then there is a polynomial time simulation of
the computation from time t to time t+d+ 1. Here d is the length of the longest
path starting at the root o in Gdiv(o,hmax). Moreover, at time t+ d+ 1, all of the
label hmax membranes have been dissolved.

Proof. If there are multiple such o, we choose the lexicographically first one.
To simulate the computation of membranes of label hmax, we choose the (valid)
computation that is defined by the graph Gdiv(o,h). That is, starting at object o,
we simulate the divisions defined by out-branchings in Gdiv(o,h), followed by
dissolutions that are triggered by sink nodes in Gdiv(o,h).

The object division graph Gdiv(o,h) may have an exponential number of paths,
so we do not explicitly simulate the membrane division and subsequent disso-
lution. Instead, we calculate the number of objects that are expelled (dissolved
out) from hmax membranes at each timestep, as follows.

Let d′ ∈ {1, 2, . . . , d}. At time t + d′ we calculate the following. For the jth
sink node in Gdiv(o,h), we calculate kj which is the number of paths of length
d′ that begin at o and end in sink j (by multiplying the adjacency matrix of
Gdiv(o,h) by itself k times). Let δj ∈ ∆hmax be the label of the jth sink, and let
[δj ]hmax → xj . At time t+ d′ the vector∑

j

(kj · (Chmax,t + xj − o))

is added to Cp(hmax),t+d′+1. The algorithm given in Section 4.4 is then used for
the remaining simulation of labels < hmax at timestep t+ d′.

After d timesteps the simulation algorithm returns to the beginning (of Sec-
tion 4.2), to find which of Cases 0, 1, 2, or 3 is applicable for time t+ d+ 1. ut

Lemma 11 (Case 2). At timestep t, for all objects o in the single membrane of
label hmax, if o /∈ ∆hmax and if the division tree of (o, h) has no sinks in ∆hmax ,
then there is a polynomial time simulation of the computation from time t until
the computation finishes. Moreover, a simulation of this computation can ignore
membranes of label hmax, and assume all ancestors of hmax never divide.
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Proof. There is a computation where no membrane of label hmax ever dissolves.
The simulation for this case ignores all membranes of label hmax for all time > t.
The algorithm in Section 4.4 simulates the dissolution-only sub-system with
labels < hmax. ut

5 Simulation algorithm for Case 3

Lemma 12 (Case 3). At timestep t, we look at all objects o ∈ O in the single
membrane of label hmax. If both of the following hold:

• for all such o, there are ≥ 1 sink nodes of Gdiv(o,hmax) not in ∆hmax , and
• there is at least one such o where ≥ 1 sink nodes of Gdiv(o,hmax) are in ∆hmax ,

then there is a polynomial time simulation of the computation from time t until
the computation finishes.

The proof is given in the remainder of Section 5.

5.1 Overview of simulation technique

We define a special graph called the division graph, and use that to choose a
specific computation to simulate. In fact we simulate only a very small number of
membranes explicitly, and ignore an exponentially large number of other mem-
branes. Remarkably, we explicitly simulate at most 2hmax−2 membranes, where
hmax is the depth of the membrane structure. We prove that this small number
of membranes is sufficient to correctly predict the output of the computation.
Then, by confluence, the correct prediction of one computation implies a correct
prediction of the answer to all computations.

5.2 Division graph

The simulation algorithm creates a (directed acyclic) division graph, Ghmax using
the following algorithm:

– Write out the object division graph Gdiv(o,hmax), for each object o in m
(the graphs are written in lexicographical order by object o, multiplicities
included).

– Add a directed edge from each sink vertex of graph i to the root of graph
i + 1. These edges are called dummy edges because they do not correspond
to actual rules.

An example division graph is illustrated in Figure 1.

10



a

b

c

δp(hmax)

e

δ3

g

h

i

j

k

δhmax

m

δ6 g

h

i

j

k

δhmax

m

δ6
. . .

o

p

p′

q

δhmax

Figure 1. Example division graph Ghmax . The contents (in this case a, g, g, . . . , o) of
the single membrane with label hmax, and the hmax division rules, are used to define
Ghmax . Dummy edges ( ) are dashed and go from sinks to roots. The shortest path
to expel the object δp(hmax) is highlighted ( ).

5.3 Some observations about the division graph

We claim that the division graph is a good model of membrane division, in the
sense that it accurately models the division history of any membrane (given
a membrane of label hmax, its division history is defined to be the sequence
of division rules, with a left/right choice for each rule, that gave rise to that
membrane from the time when there was exactly one membrane of label hmax).
In the following lemmas, the function length(·) does not count dummy edges.

Lemma 13. Each path ρ in Ghmax models the division history of a membrane
with label hmax, for exactly τ = length(ρ) consecutive division steps.

Lemma 14. The division history of any membrane of label hmax, after τ con-
secutive divisions, is modelled by some path ρ in Ghmax , and length(ρ) = τ .

5.4 Chosen computation

The simulation proceeds by simulating some important aspects of a particular
computation. This chosen computation is defined as follows.

Remark 15. Our chosen computation of Π satisfies all of the following criteria:

1. Division of hmax membranes: All hmax divisions occur in the order defined
by the division graph Ghmax . The divisions may terminate early, but if a root
object4 starts dividing, then these divisions must continue until the sinks
of Gdiv(o,h) (thus if there is a non-root, non-leaf object o present in a hmax

membrane we must immediately divide using o, and we cannot divide by
another object, nor dissolve).

4 By root object o, we mean an object that is a root vertex in one of the object division
graphs Gdiv(o,h) that Ghmax is composed of. Analogously, a leaf bject is an object
that is a leaf in some Gdiv(o,h).
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2. Dissolution of < hmax membranes: If a non-elementary membrane of label i
is to dissolve, then this happens at the earliest possible time tmin (using some
object δ ∈ ∆i) that is consistant with 1 above. (If there are multiple such δ,
then then any δ is chosen.)

3. Dissolution of hmax membranes: membranes of label hmax choose division of
root objects over dissolution, except where this would contradict point 2.

Remark 16. If we dissolve a label hmax membrane then all of its object contents
are roots or sinks, in object division graphs (in Ghmax).

5.5 Overview of Case 3 simulation algorithm

We do not simulate the division and dissolution of all label hmax membranes:
However, a subset, of ≤ hmax − 1 membranes, are explicitly simulated. The
following is an overview of our simulation algorithm for Case 3, the details are
given in the remainder of the section.

At timestep t:

– if label p(hmax) contains an element of ∆p(hmax) then simulate the dissolution
of p(hmax),

– else if any label hmax membrane expels (dissolves) out a ∆p(hmax) object
in < t timesteps, then explicitly simulate (only) the relevant label hmax

membrane, and simulate the subsequent dissolution of p(hmax),
– else p(hmax) is not dissolved,
– membranes of label < p(hmax) are simulated explicitly (as in Section 4.4).

5.6 Expel: simulating division and dissolution using shortest paths

Before giving the main simulation algorithm, we first give expel(S, τ), see Al-
gorithm 1, which uses the division graph Ghmax . Given a set of objects S, and
a time τ , the function expel(S, τ) finds whether or not the elementary mem-
branes (of label hmax) expel (release on dissolution) any element of S within τ
timesteps. If so, expel(S, τ) returns the vector C, which represents the contents
of the entire membrane m that expels some such s ∈ S. In particular, if there
are multiple such membranes that release an element of S in time ≤ τ , then
expel(S, τ) chooses the membrane which dissolves at the earliest timestep.

The expel(S, τ) algorithm computes the shortest path in the division graph
Ghmax that expels any s ∈ S [shortest path is NL-complete [7], and at most 4|S|
shortest paths need to found in each run of expel(S, τ)]. If no element of S is
expelled by membranes of label hmax in ≤ τ timesteps, then expel(S, τ) returns
FALSE.
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Algorithm 1 Find whether a membrane with label hmax expels any object from
the set S in time ≤ τ .
divGraph.expel(S: set of objects, τ: time ∈ N)

// s is a sink or root object, and δhmax ∈ ∆hmax is a sink object (in object division
// graphs). Path lengths do not include dummy edges. We ignore ‘used’ paths. O is the
// alphabet of objects (i.e. nodes in Ghmax). All paths begin at the root of the first
// object division graph in Ghmax.
FOR all s ∈ S, find the shortest path ρ (in Ghmax) of one of the following forms:

O∗sO∗δhmax
O∗δhmaxO

∗s
O∗δhmax and ∃ a rule: [δhmax ]hmax → s
O∗δhmax and s is in hmax at the timestep where Case 3 began

END FOR
IF (length(ρ) ≤ τ) // Do not count dummy edges in path lengths

Explicitly simulate the membrane induced by the path ρ to give expelled objects C
Mark the path ρ as ‘used’ in Ghmax
RETURN(C)

ELSEIF ( (@ such ρ) OR (length(ρ) > τ) )
RETURN FALSE

END IF/ELSEIF
END expel

5.7 Case 3 simulation algorithm

Algorithm 2 simulates the computation described in Remark 15. Initially there
is one membrane of label hmax, however over time (at most) exponentially many
such membranes are created. So Algorithm 2 does not explicitly simulate all label
hmax membranes. At each timestep t, Algorithm 2 checks if it should dissolve
the membrane of label p(hmax), by (i) checking Cp(hmax),t for a ∆p(hmax) object,
and if not then (ii) checking if any hmax membrane expels a ∆p(hmax) object in
any timestep < t, using expel(∆p(hmax), t− 1).

When Algorithm 2 begins execution, we have just entered Case 3 at time t
and there is at most one membrane of each label. Also, for all i, the simulation
algorithm has already initialised the vectors Ci,t to their correct contents, and
for all t′ > t, Ci,t′ = 〈0, 0, . . . , 0〉.

5.8 Case 3 proof of correctness

Lemma 17. Algorithm 2 simulates the dissolution of membrane with label
p(hmax) at timestep t, using dissolution rule r, if and only if the chosen compu-
tation (Section 5.4) does so at the same timestep t.

Proof (If). In the chosen computation defined in Section 5.4, if p(hmax) is to
dissolve at time t, then we show that Algorithm 2 simulates the dissolution of
p(hmax), using a valid rule. There are two cases, (i) and (ii).

(i) Some membrane of label hmax expels a ∆p(hmax) object at time < t. Al-
gorithm 2 uses Algorithm 1, via the call expel(∆p(hmax), t− 1), to find whether
membranes of label hmax expel ∆hmax objects at any time < t. Let C =
expel(∆p(hmax), t− 1). If C 6= FALSE, then C represents the contents of a mem-
brane that expels a ∆p(hmax) object.
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Algorithm 2 Simulation of membranes with label hmax and p(hmax). At time t
we are in Case 3, and there is one membrane of label p(hmax).
Cp(hmax),t := contents of the single membrane with label p(hmax) at time t
WHILE (C1,t encodes neither yes nor no)

IF (there is any δ ∈ ∆p(hmax) encoded in Cp(hmax),t)
Simulate the rule [δ]p(hmax) → x by adding (Cp(hmax),t + x− δ) to Cp(p(hmax)),t+1

∀t′ > t delete vectors Cp(hmax),t′

p(hmax) := p(p(hmax))
ELSE

// Check if any hmax membrane expels any δ ∈ ∆p(hmax) object in any timestep < t:
C := Ghmax.expel(∆p(hmax), t− 1)
IF (C 6= FALSE)

Add C to Cp(hmax),t

Simulate the rule [δ]p(hmax) → x by adding (Cp(hmax),t + x− δ) to Cp(p(hmax)),t+1

∀t′ > t delete vectors Cp(hmax),t′

p(hmax) := p(p(hmax))
ELSEIF (C = FALSE)

// Do nothing, i.e. p(hmax) is not dissolved
END IF/ELSEIF

END IF/ELSE
Update all Ci,t+1, where i < p(hmax), using algorithm in Section 4.4
t := t+ 1

END WHILE

(ii) There exists a ∆hmax object in p(hmax) at time t. If this is the case then
that object was either there at the timestep where p(hmax) was non-elementary
(in which case it was encoded in Cp(hmax),t at an earlier timestep), or else was
expelled by some membrane of label hmax (already shown in (i)).

(Only if) If p(hmax) does not to dissolve at time t, then we are in one of two
cases, (iii) or (iv).

(iii) There does not exist a ∆p(hmax) object in p(hmax) at time t. In Algo-
rithm 2, the vector Cp(hmax),t encodes a subset of the contents of the membrane
p(hmax), therefore if there are no ∆p(hmax) objects in the membrane p(hmax) at
time t, then there are no ∆p(hmax) objects encoded in Cp(hmax),t at time t.

(iv) No membrane of label hmax expels a ∆p(hmax) object at time < t. Algo-
rithm 2 uses Algorithm 1, via the call expel(∆p(hmax), t − 1), to find whether
membranes of label hmax expel ∆hmax objects at any time < t. If
expel(∆p(hmax), t − 1) = FALSE then this does not occur on the chosen com-
putation path, and Algorithm 2 does not simulate the dissolution of p(hmax).

ut

Lemma 18. Algorithm 2 runs in polynomial time and outputs yes iff Π does,
and outputs no otherwise.

Proof. By Lemma 17 we dissolve the p(hmax) membranes correctly (i.e. consis-
tent with the chosen computation in Section 5.4). The membranes of label i,
where 1 ≤ i < p(hmax), are simulated using the algorithm given in Section 4.4.
Finally, we note that ∆1 = {yes, no}, and so Algorithm 2 treats the search for
{yes, no} in the same way that the search for any ∆i object is treated.

Algorithm 2 iterates a number of times that is less than or equal to the num-
ber of time steps of the chosen computation that is being simulated. The most
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significant operations in Algorithms 1 and 2 involve vector addition/subtraction,
checking vector coordinates for 0, and finding shortest paths, all of which can
be computed in polynomial time. ut
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