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Abstract

We characterise the computational complexity of biological systems to assess their
utility as novel models of computation and learn how efficiently we can simulate these
systems in software. In this work we focus on the complexity of biological cells by
using several established models of cell behaviour collectively known as Membrane
Systems or P-Systems.

Specifically we focus on analysing the power of cell division and membrane dissolu-
tion using the well established active membrane model. Inspired by circuit complexity,
researchers consider uniform and semi-uniform families of recogniser membrane systems
to solve problems. That is, having an algorithm that generates a specific membrane
system to compute the solutions to specific instances of a problem.

While the idea of uniformity for active membrane systems is not new, we pioneer
uniformity conditions that are contained in P. Previously, all attempts to characterise
the power of families of membrane systems used polynomial time uniformity. This is a
very strong uniformity condition, sometimes too strong. We prove three major results
using tighter uniformity conditions for families of recogniser active membrane systems.

First, by tightening the uniformity condition slightly to log space (L) we improve a P

upper-bound on a semi-uniform family of membrane systems to a NL characterisation.
With new insight into the nature of semi-uniformity we explore the relation between
membrane systems and problems complete for certain classes. For example, the
problem STCON is NL-complete; by restricting the problem slightly it becomes L-
complete. This restriction in turn suggests a restriction to the NL characterising model
which produces a new, L characterising, variation of recogniser membrane systems.

The second and most significant of our results answers an open question in mem-
brane computing: whether the power of uniform families and semi-uniform families
are always equal. The answer to this question has implications beyond membrane
computing, to other branches of natural computing and to circuit complexity theory.
We discovered that for AC0 uniformity, the problems solved by uniform families of
systems without dissolution rules or charges are a strict subset of those problems
solved by AC0 semi-uniform families of the same type.

Finally we present a result contributing to another open question known as the
P-conjecture. We provide a surprising P characterisation of a model that can generate
exponential space in linear time using cell division. The algorithms that we use to
compress this exponential information are of interest to those wishing to simulate cell
behaviour or implement these models in silico.

Tighter uniformity conditions allow researchers to study a range of complexity
classes contained in P using the language of membrane systems. We argue that our
stricter definition of uniformity is a more accurate one for characterising recogniser
membrane systems because it allows researchers to see more clearly the actual power
of systems, while at the same time all pre-existing results for classes that contain P

(e.g. PSPACE, NP) still hold.
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Chapter 1

Introduction

Living cells do an amazing amount of information processing every second. They
read, splice, and recombine DNA, generate polypeptides and fold them into beautiful
and complex proteins using a fraction of the time and energy that silicon based
computers use to simulate the same tasks. Harnessing this computing power would be
revolutionary in the history of computing. We contribute to this aim by studying the
theoretical computing power of membrane computers.

There is a point of view, pioneered by Fredkin in the 1970’s and 1980’s, that
computation is inherent in Nature, that every physical action can be interpreted as
preforming some computation. For example, a stone falling to the earth for t seconds
calculates t times 9.81, or electrons moving through silicon can be interpreted as
computing a Boolean function.

The materials used to construct a computer are chosen because their intrinsic
properties force them to behave in a certain ways due to the laws of nature. Until
the 1930’s the majority of computers were based on rotating wheels and cogs of
different diameters. The ratios of the component’s diameters allows this technology to
compute large sums and solve differential equations. It was most famously pushed to
its limits by Charles Babbage and his planned “Analytical Engine”. These mechanical
computers were programed by punch cards, patterns of holes punched in pieces of
card.

Around the end of the 19th century, the insulating properties of cardboard were
discovered to break an electric circuit, the punch cards of mechanical computers were
repurposed to control electrical circuits in the next generation of computer. These
electric computers were further enhanced in the 1940’s and 1950’s by using the electrons
emitted by a hot metal in a vacuum to control electric currents, these were the vacuum
tube computers.

In the 1960’s it became more popular to use the behaviour of electrons in silicon
to compute Boolean functions, these circuits in wafers of crystal silicon are called
integrated circuits. Integrated circuits have been rampantly successful ever since due
to their low energy usage and because they allow for the construction of significantly
smaller computing devices.

However, the search for properties of nature to use as new and powerful methods of
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computing continues. The fields of quantum computing, chemical computing, optical
computing, and biological computing all seek to improve the speed, accuracy, and
frontiers of our computing ability. These fields also contribute to our knowledge
about the fundamental nature of the universe by testing the “Church–Turing–Deutsch”
principle [20]. That is, can all of physics be simulated by a finite machine and whether
our current abstract computing models are the most powerful possible given the
fundamental laws of physics.

Biology has been a rich source of ideas for future computing technology. Several
different directions have emerged in the field which is collectively known as biological
computing.

• Studying the way biological systems solve problems and taking inspiration to
design new algorithms (e.g. Neural Networks [43], Genetic algorithms, (Ant)
Swarm Intelligence).

• Building physical computers out of biological components, (e.g. Adleman [1],
Winfree [73], Beneson [11], Fromherz [23]).

• Directly simulating biological systems in software and hardware (e.g. the Blue
Brain project [41]).

Membrane computing defines computation models that are inspired by and ab-
stracted from the structure and function of living cells. The first formal computational
models of membrane systems∗ were introduced by George Păun [50]. This area has
since expended greatly and straddles all areas of biological computing, however, the
implementation [25] of such systems still seems far away. In anticipation of future
implementations, the majority of the research done in membrane computing to date has
been analysing the computing power of the systems using the tools of computational
complexity theory.

The formal study of computation began when Turing [71] and Church [14] crys-
tallised the idea of a computation in the Turing machine and λ-calculus respectively
and showed a limit to what is computable. A Turing machine with the ability to
simulate any other Turing machine is known as a universal Turing machine. Contem-
poraneously with the rise of integrated circuit based computers, researchers focused
on examining what problems computers could solve with restrictions on the time and
memory available to them. The class of problems solvable in polynomial time, known
as P, was defined in the early sixties [15, 22, 57] and the class of problems solved by
non-deterministic machines in polynomial time (NP) in the early seventies [17, 37, 40].
It remains to be shown if P 6= NP, this has become one of the most famous problems
in computer science and has important consequences outside of computer science to
mathematics, and even philosophy.

We study the theoretical limits of integrated circuit based computers using the
Boolean circuit model. This model closely resembles the finite hardware of a computer,
both silicon and Boolean circuits have a fixed maximum input length. Borodin [12]

∗“P-system” is the more usual term for these devices, however, to avoid confusion with the

complexity class P we refer to them as membrane systems.
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and Cook [18] introduced infinite uniform families to allow Boolean circuits to solve all
instances of a problem and not just those instances of a certain length. In a uniform
family there is an algorithm that constructs each member of the family for a specific
length. This algorithm is conceptually similar to a machine in a factory building
physical circuits.

Circuits have provided complexity theory with some of its deepest results, for
example PARITY cannot be solved by uniform constant depth polynomial size cir-
cuits [24]. Also many class separations have been proved using monotone circuits,
most significantly monotone P and monotone NP [58]. However, it is thought unlikely
to be possible to extend this proof to general circuits [59, 60] and thus the P 6= NP

conjecture.

1.1 Motivations and contributions

The native ability of bacteria and other cells to make copies of themselves inspires
us with visions of exponentially multiplying processors all churning away, solving
intractable problems. But can a cell actually be used to solve such hard problems? To
answer this we abstract away from the mind-boggling intricacy of a living cell and
create a model that strips away everything but the features that we want to analyse.
Mitosis (cell division) and apoptosis (cell dissolution) seem to have great potential
for computation, accordingly there is a variant of membrane systems known as active
membranes [51] designed to study the computational complexity of these processes.
An instance of the model consists of a number of (possibly nested) membranes,
or compartments, which themselves contain objects which represent chemicals or
molecules. The objects become other objects by rules (representing chemical reactions)
which are applicable depending on the compartment they are in. Objects can also
pass through membranes, trigger division, or dissolve a membrane.

We say that a family of active membrane systems solves a problem if there is a
member of the family to recognise every instance of the problem. In a semi-uniform
family each member of the family recognises a single problem instance. In a uniform
family each member of the family recognises all problem instance a certain length.

It was shown that semi-uniform (Sośık [66]) and uniform families (Alhazov et
al. [4]) of active membrane systems could solve PSPACE-complete problems in linear
time, which indicates that active membrane systems are a powerful parallel model of
computation [26]. Later, Sośık and Rodŕıguez-Patón showed [67] that active membranes
are no more powerful than parallel machines by proving a PSPACE upper-bound on
the model. This result holds for a very general definition of membrane systems and so
can be interpreted as an upper-bound on systems with dividing membranes.

The original active membrane model allows for membranes to be “charged” (rep-
resenting an electrical charge or polarization). This in effect allows a membrane to
relabel itself and seems to be too powerful to allow a system to characterise classes
contained in PSPACE. Alhazov et al. proposed active membrane systems without mem-
brane charges [6] which is denoted AM0. Using active membranes without charges it
seems that solving PSPACE-complete problems necessitated the use of non-elementary
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division [7], that is, a copy of all sub-membranes is made when a membrane divides.
This idea was formulated as the “P-conjecture” which states that active membrane
systems without charges and non-elementary division characterise P [53]. There have
been many attempts to resolve this problem (see Mauri et al. [42] for a survey) and
we present a solution for a restriction of the problem in Chapter 5. Another attempt
to resolve the P-conjecture made the discovery that membrane dissolution is a key
ingredient to active membrane systems and that all systems without dissolution rules
are upper-bounded by P [30]. However in Chapters 3 and 4 of this thesis we show that
the situation is even more subtle and interesting.

Previously (almost) all complexity results in membrane computing used uniform
and semi-uniform families whose members were constructable in polynomial time. We
argue that polynomial time uniformity is to strong to discuss the complexity class P

and below and that in general if is best to use a weak uniformity condition to get a clear
understanding of the computational complexity of a membrane system. All results
in this thesis (apart from Section 5.2) are clarifications of the true computational
complexity of various active membrane systems that are only possible due to us
choosing more appropriate uniformity condition. Figure 1.1 is a representation of the
best known results related to the P-conjecture excluding the work in this thesis. The
effects of restricting the semi-uniformity and uniformity conditions of P-conjecture
systems to be computable FAC0 can be seen in Figure 1.2.

P

-d, -ne, -u

PSPACE

P

+d, -ne, -u

PSPACE

P

+d, -ne, +u

P

-d, -ne, +u

P

-d, +ne, -u
P

-d, +ne, +u

PSPACE

+d, +ne, -u
PSPACE

+d, +ne, +u

Figure 1.1: A diagram showing the best known upper and lower-bounds on families of
some variations of active membrane systems without charges (excluding the work in
this thesis). Arrows represent inclusions. The lower part of each node indicates the
properties that system: the parameter “-d”, rules of type (d) are prohibited, “-ne” that
rules of types (ew) and (f) are prohibited. The parameter “+u” indicates P-uniform
and “-u” P-semi-uniform families. If the node is split, the top part represents the best
known upper-bounds and the lower part, the best known lower-bounds. A node with
a single complexity class represents a characterisation.

By studying the computational complexity of membrane systems we express existing
problems in a new context. For example, thanks to the results in Chapters 3 and
Chapters 5 we can describe the difference between NL and P in terms of dissolution and
evolution in membrane systems.There is also the possibility that studying complexity
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theory in the framework of membrane systems will yield solutions to general complexity
problems more easily than in other frameworks.

Complexity results for membrane computing allow those implementing membrane
computers to know in advance what their experimental devices are capable of computing
and how efficiently. Similarly these results also guide those who seek to simulate in
software, models of cells or use membrane systems to simulate other complex systems
such as eco-systems or protein channels, since a simulator cannot compute any faster
or with less memory than the theoretical limits imposed by the lower-bound of a good
model.

Now we list the contributions that we have made in this thesis.

1. Tighter uniformity conditions for families of membrane systems. Previously, only
polynomial time constructable families of membrane systems were considered. By
introducing families constructable in constant parallel-time (FAC0) we discovered
that several upper-bounds for various models could be improved and allowed
the characterisation of classes inside P using membrane systems.

2. Improved the P upper-bound on semi-uniform AM0
−d to NL. Previously (with P

uniformity) the upper-bound on all active membrane systems without dissolution
was P [30]. Using more appropriate semi-uniformity conditions we showed that
these systems actually characterise NL.

3. Discovered that the C-uniform AM0
−d characterises C for a range of complexity

classes C. P-uniform families of AM0
−d characterise P [30], however we discovered

that if the uniformity condition is computable in some other class C, the resulting
family characterises the class C! We have observed this effect down as far
as C = AC0.

4. Proved that uniform and semi-uniform families are not equal. A trend of results
seemed to indicate that semi-uniform and uniform families of systems would
always have the same computing power. However, we have shown that this is
not the case, resolving Open question C in [56].

5. Introduced semi-uniformity for circuits. Our result showing uniform and semi-
uniform families have different computing power is applicable for all models
which use uniform families. To demonstrate this we proved a similar result for
uniform and semi-uniform families of circuits.

6. Resolved a biologically motivated restriction of the P-conjecture. We show a
partial result for the still-open P-conjecture. We restricted the division rules so
that both resulting membranes must have the same contents and showed that
such systems characterises P.

7. Introduced a new technique for constructing semi-uniform families. We observed
that a semi-uniform family of model M to solve problem X is closely related to
a reduction from X to the prediction problem for the model M .
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8. Introduced a more general recogniser condition for membrane systems. The
standard restrictions on recogniser membrane systems can be generalised in a
way that makes them easier to program yet does not increase their lower-bound.

9. Introduced a new way to restrict the computing power of a system. By re-
stricting the definition of recogniser systems, we restricted the power of semi-
uniform AM0

−d systems to L.

NL

-d, -ne, -u

PSPACE

P

+a, +d, -ne, -u

PSPACE

P

+a, +d, -ne, +u

AC0

-d, -ne, +u

NL

-d, +ne, -u
AC0

-d, +ne, +u

PSPACE

+d, +ne, -u
PSPACE

+d, +ne, +u

P

-a, +d, -ne, -u
P

-a, +d, -ne, +u

Figure 1.2: A diagram, including the results in this thesis, showing the currently known
upper and lower-bounds on the variations of active membrane systems without charges.
The lower part of each node indicates the properties that system: the parameter “-a”,
rules of type “(e)” are prohibited, “-d”, rules of type (d) are prohibited, “-ne” that
rules of types (ew) and (f) are prohibited. The parameter “+u” indicates AC0-uniform
and “-u” AC0-semi-uniform families. If the node is split, the top part represents the
best known upper-bounds and the lower part, the best known lower-bounds. A node
with a single complexity class represents a characterisation.

1.2 Basic terminology

First we clarify some notation then define graphs, multisets, complexity classes and
reductions.

• Let N0 be the set of non-negative integers {0, 1, 2, . . .}.

• The set of all subsets of S, known as the powerset of S, is denoted P(S).

• All logarithms are to base 2, unless specified otherwise.

1.2.1 Graphs

A finite graph G = (V,E) is a pair of vertices V and edges E ⊆ V × V . (We do
not allow multi-edges). If the edges are of the form E ⊆ {(p, c) | c, p ∈ V } we say
the graph is directed. If the edges are of the form E ⊆ {{p, c} | c, p ∈ V } we say
the graph is undirected. In an edge (p, c) we call p the parent and c the child node.

6



Introduction
Basic terminology

Let G = (V,E) be a directed graph with x, y, z ∈ V . Then let path(x, y) be true
if x = y, or ∃ z s.t path(x, z) and path(z, y). Otherwise path(x, y) is false. A cycle is
where a node x in the graph has a path via 1 or more edges from node x back to x
again. A graph without cycles is said to be acyclic.

A tree, T , is an acyclic graph where each vertex has at most 1 parent and there is
a single special parentless vertex (called the root) from which there is a unique path
to each other vertex in T . The function subtree : T × V → T returns the subtree of
the tree T rooted at v. If v is a leaf then v is returned, if v /∈ V then the empty set is
returned.

Let parent : T × V → V such that when given a vertex, c, in a directed tree T , the
parent of that vertex (or null) is returned, that is

parent(T, c) = p such that, ∃(p, c) ∈ E

In this thesis when a graph is represented in binary, the set of edges is encoded
as an adjacency matrix. The adjacency matrix A with entries (ai,j)n×n of a graph G

(with n = |V | vertices) is defined by

ai,j :=

1 if (vi, vj) ∈ E
0 otherwise.

Let a depth first ordering (DFO) be a list of the vertices in a tree such that no
vertex is listed before its parent. That is there is an ordering ≤DF on the vertices
of a tree such that vi ≤DF vj (where vi, vj ∈ V ) iff vi is an element of the vertices
of subtree(T, vj). This ordering is computed by the well known Depth First search
algorithm in time O(|V |+ |E|) [70].

1.2.2 Multisets

A multiset [38, 68] over a finite alphabet Σ is a mapping Q : Σ→ N0. The multiplicity
of s in the multisetM is QM(s) (where s ∈ Σ), this is expressed as a tuple (s,Q(s)) ∈
M. The set of all multisets over Σ is written as MS(Σ). If A and B are multisets, the
binary operator ] returns a new multiset such that an element occurring a times in A
and b times in B occurs exactly a+ b times in A ]B. The binary operator 	 returns
a new multiset such that an element occurring a times in A and b times in B occurs
exactly max(0, a− b) times in A	B. The empty multiset is denoted ∅.

The support of multiset M is the set support(M) = {x ∈ Σ | QM(x) > 0}. We
say that x ∈M if x ∈ support(M).

A multiset M can be represented as an explicit collection of elements contain-
ing QM(x) occurrences of x. For example, the multisetM over {a, b, c}∗ with QM(a) =
3, QM(b) = 1, QM(c) = 2 is represented as M̃ = [a, b, a, c, c, a]. As with sets, the
order of the elements in this representation is not fixed. When we especially wish for
the multiset to be expressed in this format we refer to it using the notation M̃. Note
that to distinguish multisets from sets we use brackets [ and ] in the place of { and }.
Let |M| be the total number of objects in a multiset. Let ‖M‖ be the number of
distinct objects in the multiset, that is ‖M‖ = |support(M)|.
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1.2.3 Computational complexity

The following summary of complexity classes is based on those by Kabanets [36]. In
this thesis, by Turing machine we mean a standard multitape Turing machine that
consists of a finite control, three semi-infinite tapes (input tape, work tape, and output
tape) divided into cells, and a tape head for each of the three tapes.

A Turing machine is deterministic if at each time-step it has at most one choice
for its next move. We say that a Turing machine M decides a language L ⊆ Σ∗ if on
every input string x ∈ Σ∗ where x ∈ L, M halts in the accepting state, and if x /∈ L
the M halts in the rejecting state.

We define TIME(f) to be the class of languages that can be decided by a deter-
ministic Turing machine which is time bounded by some function in O(f). We define
SPACE(f) to be the class of languages that can be decided by a deterministic Turing
machine which is space (accessed cells of work tape) bounded by some function in
O(f).

A Turing machine is non-deterministic if it can have more that one choice for its
next move. A language L ⊆ Σ∗ is decided by a non-deterministic Turing machine M
if, for every input string x ∈ Σ∗, if x ∈ L, there is at least one legal computation path
that takes M to the accepting state, else if x /∈ L, no computation path will take M
to the accepting state.

We define NTIME(f) to be the class of languages that can be decided by a non-
deterministic Turing machine which is time bounded by some function in O(f).
We define NSPACE(f) to be the class of languages that can be decided by a non-
deterministic Turing machine which is space bounded by some function in O(f).

We now define the classes of problems

P = ∪k>0TIME(nk)

NP = ∪k>0NTIME(nk)

PSPACE = ∪k>0SPACE(nk)

L = SPACE(log n)

NL = NSPACE(log n)

We also note that a language L = Σ∗\L is in the complexity class coC iff its
complement language L is in the complexity class C. Immerman and Szelepcsény [31,
69] have shown that coNSPACE(f) = NSPACE(f) where f(n) ≥ log n, hence coNL =
NL and coPSPACE = PSPACE.

A function f that maps from {1, 0}∗ to {1, 0}∗ can be expressed as a language
problem Lf , where the word 〈x, i〉 ∈ Lf if the ith bit of f(x) is 1. Let FP be the set
of all functions from {1, 0}∗ to {1, 0}∗ computable in deterministic polynomial time.
Let FL be the set of all functions from {1, 0}∗ to {1, 0}∗ computable in deterministic
logarithmic space. Let FNL be the set of all functions from {1, 0}∗ to {1, 0}∗ computable
in non-deterministic logarithmic space.
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1.2.3.1 Uniform families of Boolean circuits

A Boolean circuit α is a labeled finite directed acyclic graph. Each vertex v (known
as a gate) is of type AND (∧), OR (∨), NOT (¬), INPUT, or OUTPUT. An INPUT
gate has indegree 0 (the indegree of a gate is referred to as fan-in). The inputs of α
are given by a tuple (x1, . . . , xn) (where each xi ∈ {1, 0}) of distinct input gates. A
vertex with out-degree 0 is called an OUTPUT. The outputs of α are given by a
tuple (y1, . . . , ym) (where each yi ∈ {1, 0}) of distinct vertices.

A Boolean circuit α with inputs (x1, . . . , xn) and outputs (y1, . . . , ym) computes a
function f : {0, 1}n → {0, 1}m as follows: input xi is assigned the value of the ith bit
of the argument to the function. Every other gate v is assigned a value from {0, 1}
calculated (depending on its type) from the values of the gates connected from v’s
incoming edges, starting at the inputs and them moving through the circuit. The value
of the function f is the values of the output gates (y1, . . . , ym) in which output yj
contributes the jth bit of the output.

The size of a circuit α (size(α)) is the number of vertices in α. The depth of a
circuit α (depth(α)) is the longest path from an input vertex to an output vertex in α.
The time required by parallel model of computation to compute a function has a direct
relationship with depth of a circuit required to compute the same function.

Boolean circuits are a non-uniform model of computation since the circuit is fixed
for a given input length. To overcome this we can consider an infinite collection
(known as a family) of circuits for each input length.

A Boolean circuit family {αn} is a collection of circuits, each αn computing a
function fn : {0, 1}n → {0, 1}m(n). The function computed by the family {αn},
denoted fα : {0, 1}∗ → {0, 1}∗ is defined by fα(x) ≡ f |x|(x). If the length of the
output of each member of the family is 1, we call it a language decider. Note that each
circuit in the family may be totally different from every other circuit. Without any
restriction on the relationship between the circuits, a family may accept any binary
language. To restrict this power we impose a condition on the elements of the family,
this is known as a uniformity condition. For example a family {αn} of Boolean circuits
is logarithmic space (L) uniform if the transformation 1n → αn can be computed
in log(size(αn)) space on a Turing machine.

First order, FO, uniformity [33] is currently regarded [10, 33, 34] as the best form
of uniformity for circuits especially when working with complexity classes contained
in NL. In an FO-uniform circuit family, member αn is first order definable from 1n.

The complexity class ACi is the set of problems solved by a FO-uniform circuit family
of depth O(logi n) and size poly(n) where the gates in each circuit have unbounded
fan-in. The set FACi is the set of functions computed by a FO-uniform circuit family
of depth O(logi n) and size poly(n) where the gates in each circuit have unbounded
fan-in. Thus AC0 is the set of problems solved by a uniform family of polynomial sized
circuits, with unbounded gate fan-in, in constant depth. We define AC = ∪i>0ACi.

The complexity class NCi is the set of problems solved by a FO-uniform circuit
family of depth O(logi n) and size poly(n) where the gates in each circuit have fan-in
at most 2. The set FNCi is the set of functions computed by a FO-uniform circuit
family of depth O(logi n) and size poly(n) where the gates in each circuit have fan-in
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at most 2. We define NC = ∪i>0NCi.
Note that for all i ≥ 0,NCi ⊆ ACi ⊆ NCi+1, the former inclusion trivially holds

and the latter follows from the fact that each logic gate with (a maximum) fan-in n

can be replaced with a tree of gates with fan-in 2 and depth log n. We can summarise
the known relations between these classes as follows:

NC0 ⊆ AC0 ( NC1 ⊆ AC1 ⊆ L ⊆ NL = coNL ⊆ NC2 ⊆ P ⊆ NP ⊆ PSPACE

Also note that L ( PSPACE [48].

1.2.3.2 Reductions and completeness

A language A is reducible to language B, (written as A ≤ B) if there is a computable
function f : Σ∗ → Σ∗, where w ∈ A ⇐⇒ f(w) ∈ B. The function f is called a
reduction from A to B. We say that L is C-hard (where C is a complexity class) if L
can be reduced (L ≤ B) to B ∈ C. We say that L is C-complete if L is C-hard and
L ∈ C.

We must restrict the reduction to ensure that the problem is not made easier or
harder by the reduction. In general it is desirable to have as weak a reduction as
possible. In this thesis most reductions are computable in FAC0 (denoted ≤AC0).

1.2.4 Constant parallel time computations

Concurrent Random Access Machines (CRAMs) [32] are a parallel model of computa-
tion with many processors all operating on a global memory. They are synchronous
(that is all the processors work in lock step) and concurrent (several processors may
read and write from the same location at the same time-step). Each processor is
identical except they each have a unique processor number (if several processors try to
write to same bit of memory, then the lowest processor is the only one that succeeds).
Each processor has a finite set of registers to store the following: the index of the
processor, an address of global memory, and the line number of the instruction to be
executed next. The instruction types and operations of a CRAM are: read, write, move,
branch, assignment, addition, subtraction, and branch-on-less-than. Also permitted
is a shift function, such that shift(x, y) shifts the word x by y bits to the right, this
allows each processor to access a part of the input word in constant time. There is
a specific section of memory designated as the output. These basic instructions and
operations can build up into useful functions that are used to allow us to specify the
operation of the CRAM in a more general way.

Let CRAM(O(1)) be the set of problems solved by Concurrent Random Access
Machines in constant time.

Theorem: 1.1 ([32]). CRAM(O(1)) = FO–uniform AC0

Instead of providing a FO-uniform circuit for a reduction or uniformity condition,
it is often easier to give a constant time CRAM algorithm.
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Chapter 2

Membrane systems

Membrane systems with active membranes were first outlined [51] by Păun with their
characteristic features of membranes charges (+,−,0) and division rules. Păun showed
that such systems could solve SAT by mapping problem instances to membrane systems,
this mapping would be later be defined as semi-uniformity. Obtu lowicz [47] refined
this mapping by providing a logspace Turing machine that constructed a membrane
system to solve a given input SAT instance. Pérez-Jiménez et al. [55] formalised the
definitions of polynomial time uniform and semi-uniform families, and so provided
a framework to reason about the computational complexity of membrane systems.
The active membrane model has been formally defined previously by Romero-Jiménez
and Riscos-Núñez [61, 62]. These definitions were designed so that several varieties of
membrane system could use the same framework. However, in this thesis we focus
exclusively on active membrane systems and so have more specific definitions based
on, or inspired by, those in the literature [30, 51, 52, 55, 61, 62, 67].

2.1 Active membrane systems without charges

In this thesis we exclusively discuss active membrane systems without charges. It is
necessary to refer to the absence of charges since they are a defining characteristic in
the original model definition [51].

Definition: 2.1. An active membrane system without charges is a 6-tuple Π =
(O,µ,M,H,L,R) where,

1. O is the alphabet of objects;

2. µ = (Vµ, Eµ) where Vµ ⊆ N0 and Eµ ( Vµ × Vµ is a tree representing the
membrane structure;

3. M : Vµ → MS(O) maps membranes to their multisets;

4. H is the finite set of membrane labels;

5. L : Vµ → H maps membranes to their labels;
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6. R is a finite set of developmental rules of the following types (where o, u, v ∈
O × {1}, m ∈ MS(O), h, g, l ∈ H):

(a) (a, o, h,m),

(b) (b, o, h, u),

(c) (c, o, h, u),

(d) (d, o, h, u),

(e) (e, o, h, {u, v}),

(es) (es, o, h, {u, u}),

(ew) (ew, o, h, {u, v}),

(f) (f, {g, l}, h, {}).

Note that

• we use Vµ to refer to the set of membranes in a system Π.

• The root vertex 0 of µ represents the ultimate parent of all membranes in a
membrane structure. It is referred to as the “environment” and has label 0 ∈ H.
Since the environment has no parent, only type (a) rules are applicable to it.

The notation of rules in Definition 2.1 is in a non-standard and less readable format,
this is to aid the formal definition of active membrane systems. In other chapters of
this thesis we use the standard formating when specifying a membrane system. The
semantics and formats of the rules are defined in Section 2.1.1.

To prevent extra information being included in the encoding of a membrane
system, we define what is a permissible encoding. Previous membrane encoding
schemes [55] specified for numbers to be encoded in binary. If a multiset is specified in
the format a3, b2 instead of [ a, a, a, b, b ] it becomes possible to encode an exponential
number of objects in linear time. We consider this undesirable and so enforce that the
multiplicity of objects in multisets must be encoded in unary (denoted M̃) though the
object types may be in binary. This restriction does not affect any previous results
related with this thesis.

Definition: 2.2. A permissible encoding 〈Π〉 = 〈O,µ,M,H,L,R〉 of a membrane
system Π is a string from {0, 1}∗ with the following restrictions:

• O is encoded as a list of binary strings,

• µ = (Vµ, Eµ) is encoded as the adjacency matrix Aµ,

• Each multiset M is encoded explicitly in unary, that is in the form M̃ ,

• H is encoded as a list of binary strings,

• L is encoded as set of tuples in binary,

• R is written as a sequence of 4-tuples, objects and labels may be written in binary
however the multisets m̃ in type (a) rules must be written out explicitly in unary

12



Membrane systems
Active membrane systems without charges

• We also augment the encoding scheme with the characters (, ), {, }, and , which
are used to delineate the above string a reasonable manner. The special space
character may be inserted anywhere with no effect on the system’s meaning.

A configuration of a membrane system contains a complete description of all the
information regarding the current state of the membrane system.

Definition: 2.3. A configuration C of a membrane system is a tuple (µ,M,L) where

• µ = (Vµ, Eµ), where Vµ ⊆ N0 and E ( Vµ×Vµ is a tree representing the current
membrane structure,

• M : Vµ → MS(O), the multisets of objects in each membrane,

• L : Vµ → H, maps membranes to labels.

A permissible encoding scheme of a configuration 〈C〉 is defined in the same way
as outlined in Definition 2.2.

2.1.1 Rules of active membrane systems

In this section we define the exact behaviour of each type of rule and how it affects
a membrane configuration. For each rule type we define a predicate that is true if
a rule of that type is applicable to a membrane in a configuration. For each rule
type we define a function that when given a rule and a configuration, C, returns the
appropriate modified configuration, C′. If the rule is not applicable to the membrane,
the configuration is unchanged.

2.1.1.1 Rules of type (a)

Rules of type (a) are known as object evolution rules and are a tuple (a, o, h,m)
where o ∈ {(x, 1)}, x ∈ O,m ⊆ MS(O), h ∈ H. These rules are more commonly
written in the form [x ]h → [ m̃ ]h or [x → m̃ ]h. A single object of type x in a
membrane with label h is replaced by a multiset of new objects specified in m.

We define the predicate applicablea(C, i, r) to be true iff ∃i ∈ Vµ such that o ∈M(i)
and L(i) = h where r = (a, o, h,m). We say a type (a) rule r is applicable in membrane i
of a configuration C iff applicablea(C, i, r) holds.

Given a configuration C = (µ,M,L) and a rule r = (a, o, h,m) of type (a) applicable
to membrane i, we say that this rule has been applied if a new configuration C′ =
applya(r, i, C) is generated.

C′ = (µ′,M ′, L′) = applya(r, i, C) such that

µ′ = µ

M ′ = {(j,m′) | j ∈ Vµ, if i = j then m′ = (M(j)	 o) ]m else m′ = M(j)}
L′ = L.

The membrane structure and labels are unchanged by these rules. However in mem-
brane i, an object o is removed and we add the multiset of objects m.
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2.1.1.2 Rules of type (b)

Rules of type (b) are known as communication in rules and are a tuple (b, o, h, u)
where o ∈ {(x, 1)}, u ∈ {(y, 1)}, x, y ∈ O, h ∈ H. These rules are more commonly
written in the form x [ ]h → [ y ]h. A single object of type x outside a membrane with
label h is sent through the membrane to join that membrane’s multiset, it may change
in the process to an object of type y.

We define the predicate applicableb(C, i, r) to be true iff ∃i, j ∈ Vµ such that L(i) =
h and o ∈M(j) and j = parent(µ, i), where r = (b, o, h, u). We say a type (b) rule r
is applicable in membrane i of a configuration C iff applicableb(C, i, r) holds.

Given a configuration C = (µ,M,L), and a rule r = (b, o, h, u) of type (b) applicable
to membrane i, we say that this rule has been applied if a new configuration C′ =
applyb(r, i, C) is generated.

C′ = (µ′,M ′, L′) = applyb(r, i, C) such that

µ′ = µ

M ′ = {(j,m′) | j ∈ Vµ}

where m′ =


M(j) ] u if j = i

M(j)	 o if j = parent(µ, i)

M(j) otherwise

L′ = L.

This rule does not affect the membrane structure nor labels. In the parent of mem-
brane i an object of type x is removed, and an object of type y is added to membrane i.

2.1.1.3 Rules of type (c)

Rules of type (c), known as communication out rules, are a tuple (c, o, h, u) where o ∈
{(x, 1)}, u ∈ {(y, 1)}, x, y ∈ O, h ∈ H. These rules are more commonly written in the
form [x ]h → [ ]h y. A single object of type x inside a membrane with label h is sent
through the membrane to join the parent membrane’s multiset, x may be changed in
the process to become an object of type y.

We define the predicate applicablec(C, i, r) to be true iff ∃i ∈ Vµ, i 6= 0 such
that L(i) = h and o ∈ M(i), where r = (c, o, h, u). We say a type (c) rule r is
applicable in membrane i of a configuration C iff applicablec(C, i, r) holds.

Given a configuration C = (µ,M,L), and a type (c) rule r = (c, o, h, u) applicable
to membrane i, we say that this rule has been applied if a new configuration C′ =
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applyc(r, i, C) is generated.

C′ = (µ′,M ′, L′) = applyc(r, i, C) such that

µ′ = µ

M ′ = {(j,m′) | j ∈ Vµ},

where m′ =


M(j)	 o if i = j

M(j) ] u if j = parent(µ, i)

M(j) otherwise

L′ = L.

The membrane structure and set of labels are unchanged by this rule. All membrane
contents are the same except for membrane i which has o removed from it and the
parent of i which has u added to it.

2.1.1.4 Rules of type (d)

Rules of type (d) are known as dissolution rules and are a tuple (d, o, h, u) where o ∈
{(x, 1)}, u ∈ {(y, 1)}, x, y ∈ O, h ∈ H. These rules are more commonly written in
the form [x ]h → y where x, y ∈ O and h ∈ H. A single object of type x inside a
membrane with label h dissolves that membrane, the entire contents (child membranes
and objects) of the dissolved membrane, are moved to the parent membrane, the
triggering object x may be changed in the process to become an object of type y.

We define the predicate applicabled(C, i, r) to be true iff ∃i ∈ Vµ, i 6= 0 such
that L(i) = h and o ∈ M(i), where r = (d, o, h, u). We say a type (d) rule r is
applicable to membrane i of a configuration C iff applicabled(C, i, r) holds.

Given a configuration C = (µ,M,L), and a type (d) rule r = (d, o, h, u) applicable
to membrane i, we say that this rule has been applied if a new configuration C′ =
applyd(r, i, C) is generated.
C′ = (µ′,M ′, L′) = applyd(r, i, C) and is defined as follows. The dissolved mem-

brane i is removed from the membrane structure and the edge (p, i) from the parent p
to i is removed along with the edges Ec = {(i, c) ∈ Eµ | c ∈ Vµ} to the children of i.
We then add a set of new edges that makes the parent of i become the parent of i’s
former children: Ec,p = {(p, c) | p, c ∈ Vµ and (p, i), (i, c) ∈ Eµ}.

µ′ = (V ′µ, E
′
µ) where

V ′µ = Vµ\i,
E′µ = Eµ\ ({(p, i)} ∪ Ec) ∪ Ec,p

The multiset of the dissolved membrane i is added to its parent membrane, removing
the triggering object o and replacing it with u:

M ′ = {(j,m′) | j ∈ V ′µ}

where m′ =

M(j) ] (M(i)	 o) ] u if j = parent(µ, i)

M(j) otherwise
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The dissolved membrane i is removed from the set of membrane-label relations:

L′ = L\(i, L(i)).

2.1.1.5 Rules of type (e), elementary division

Rules of type (e), known as elementary division rules, are a tuple (e, o, h, {u, v})
where o ∈ {(x, 1)}, u ∈ {(y, 1)}, v ∈ {(z, 1)}, x, y, z ∈ O, h ∈ H. These rules are
commonly written in the form [x ]h → [ y ]h[ z ]h. An elementary membrane has no
child membranes. When this rule is applied to an elementary membrane with label h,
the membrane is copied (multiset included) to create a new membrane with the same
label. In the original membrane an object of type x is replaced by one of type y and
in the copy with one of type z.

We define the predicate applicablee(C, i, r) to be true iff ∃i ∈ Vµ, i 6= 0 such
that L(i) = h and o ∈ M(i) and i has no children (@c ∈ Vµ, (i, c) ∈ Eµ), where r =
(e, o, h, {u, v}). We say a type (e) rule r is applicable to membrane i of a configuration C
iff applicablee(C, i, r) holds.

Given a configuration C = (µ,M,L), and a type (e) rule r = (e, o, h, {u, v})
applicable to membrane i, we say that this rule has been applied if a new configura-
tion C′ = applye(r, i, C) is generated.
C′ = (µ′,M ′, L′) = applye(r, i, C) where

µ′ = (Vµ ∪ i′, Eµ ∪ {(parent(µ, i), i′)})

We add a new membrane i′ with the same parents as i to the membrane structure.

M ′ = {(j,m′) | j ∈ V ′µ} where m′ =


(M(i)	 o) ] u if j = i

(M(i)	 o) ] v if j = i′

M(j) otherwise

The multisets of i′ and i are identical except o is replaced with u in one and with v in
the other.

L′ = L ∪ (i′, L(i))

The membrane i′ has the same label as membrane i.

2.1.1.6 Rules of type (es), symmetric elementary division

Rules of type (es) are known as symmetric elementary division rules and are a
tuple (e, o, h, {u, u}) where o ∈ {(x, 1)}, u ∈ {(y, 1)}, x, y ∈ O, h ∈ H. These rules are
commonly written in the form [x ]h → [ y ]h[ y ]h. An elementary membrane has no
child membranes. When this rule is applied an elementary membrane with label h
is copied (multiset included) to create a new membrane with the same label. In the
both membranes an object of type x is replaced by one of type y.

We define the predicate applicablees
(C, i, r) to be true iff ∃i ∈ Vµ, i 6= 0 such

that L(i) = h and o ∈ M(i) and i has no children (@c ∈ Vµ, (i, c) ∈ Eµ), where r =
(e, o, h, {u, u}). We say a type (e) rule r is applicable in membrane i of a configuration C
iff applicablees

(C, i, r) holds.
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Given a configuration C = (µ,M,L), and a type (es) rule r = (es, o, h, {u, u})
applicable to membrane i, we say that this rule has been applied if a new configura-
tion C′ = applyes

(r, i, C) is generated.

C′ = (µ′,M ′, L′) = applye(r, i, C) where

µ′ = (Vµ ∪ i′, Eµ ∪ (parent(µ, i), i′))

We add a new membrane i′ with the same parents as i to the membrane structure.

M ′ = {(j,m′) | j ∈ V ′µ} where m′ =

(M(i)	 o) ] u if j = i ∨ j = i′

M(j) otherwise

The multisets of i′ and i are identical, o is replaced with u in both.

L′ = L ∪ (i′, L(i))

The membrane i′ has the same label as membrane i.

2.1.1.7 Rules of type (ew), weak non-elementary division

Rules of type (ew) are known as weak non-elementary division rules and are a tu-
ple (ew, o, h, {u, v}) where o ∈ {(x, 1)}, u ∈ {(y, 1)}, v ∈ {(z, 1)}, x, y, z ∈ O, h ∈ H.

They are more commonly written in the format [x ]h → [ y ]h[ z ]h. These rules
are like rules of type (e) except they are permitted to operate on non-elementary
membranes (that is, membranes with child membranes). The rule makes an isomorphic
duplicate of an entire subtree of the membrane structure rooted at a membrane with
label h including multisets and child membranes. Each membrane in the new subtree
has the same label as its isomorphic pair membrane in the original structure. An
object of type x is replaced by one of type y in the root membrane of one subtree and
by one of type z in the other.

We define the predicate applicableew
(C, i, r) to be true iff ∃i ∈ Vµ, i 6= 0 such

that L(i) = h and o ∈M(i), where r = (ew, o, h, {u, v}). We say a type (ew) rule r is
applicable in membrane i of a configuration C iff applicableew

(C, i, r) holds.

Given a configuration C = (µ,M,L) and a type (ew) rule r = (ew, o, h, {u, v})
applicable to membrane i, we say that this rule has been applied if a new configura-
tion C′ = applyew

(r, i, C) is generated.

Let “mark” be a function that when given a tree T , gives an isomorphic tree
where each vertex k is renamed k. We use the function subtree that was defined in
Section 2.1. Let T = (V ,E) = mark(subtree(µ, i)).

C′ = (µ′,M ′, L′) = applyew
(r, i, C) where

µ′ = (V ′µ, E
′
µ) = (Vµ ∪ V ,Eµ ∪ E ∪ {(parent(µ, i), i)})

We augment the membrane structure by adding a copy of the subtree rooted at i to
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the parent of i.

M ′ = {(j,m′) | j ∈ V ′µ} where m′ =


(M(j)	 o) ] u if j = i

(M(j)	 o) ] v if j = i

M(k) if j = k ∈ V
M(j) otherwise

The multisets of unaffected membranes are the same. The multisets of the membranes
of the new subtree are identical to the membrane they were copied from. In membrane i,
an object of type o is replaced with an object of type u, and in membrane i an object
of type o is replaced with one of type v.

L′ = L ∪ {(j, L(j)) | j ∈ V ′µ}

The label of each new membrane is identical to its isomorphic pair membrane.

2.1.1.8 Rules of type (f), strong non-elementary division

Rules of type (f) are known as strong non-elementary division rules and are a tu-
ple (f, {g, l}, h, {}) where h, g, l ∈ H.

They are more commonly written in the format [ [ ]g [ ]l ]h → [ [ ]g ]h [ [ ]l ]h. These
rules are of a different nature to all the other rules discussed here as they are triggered
by membranes and not objects. The rule duplicates the entire subtree of the membrane
structure rooted at a membrane with label h containing a membrane with label g
and another with label l. One duplicate does not contain the subtree rooted by the
membrane with label g and the other does not contain the subtree rooted by the
membrane with label l. Each membrane in the new subtree has the same label as
its isomorphic pair membrane in the original structure (except those in the g and l

subtrees).
We define the predicate applicablef(C, i, r) to be true iff ∃i ∈ Vµ, i 6= 0 such

that L(i) = h and ∃j, k ∈ Vµ such that i = parent(µ, j) and i = parent(µ, k) and g =
L(j) and l = L(k), where r = (f, {g, l}, h, {}). We say a type (f) rule r is applicable in
membrane i of a configuration C iff applicablef(C, i, r) holds.

Given a configuration C = (µ,M,L), and a type (f) rule r = (f, {g, l}, h, {})
applicable to membrane i, we say that this rule has been applied if a new configura-
tion C′ = applyf(r, i, C) is generated.

Let mark be a function that when given a tree T , gives an isomorphic tree where
each vertex k is renamed k. We use the function “subtree” that was defined in
Section 2.1. Let T = (E, V ) = mark(subtree(µ, i)). Let Tg = (Eg, Vg) = subtree(µ, j)
where g = L(j) and i = parent(µ, j). Let T l = (El, Vl) = subtree(T , k) where l = L(k)
and i = parent(µ, k).
C′ = (µ′,M ′, L′) = applyew

(r, i, C) where

µ′ = (V ′µ, E
′
µ) = ((Vµ\Vg) ∪ (V \V l),

(Eµ\Eg) ∪ (E\El) ∪ {(parent(µ, i), i)})
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We augment the membrane structure by making an isomorphic copy of the membrane
structure subtree rooted at i, we refer to it as T . We remove from children of i a
membrane (and its subtree) with label g and from T we remove a membrane with
label l (and its subtree). We join the subtree T back to the membrane structure by
setting its parent to be the parent of i.

M ′ = {(j,m′) | j ∈ V ′µ} where m =

M(j) if j = j ∈ V
M(j) otherwise

The multisets of all unaffected membranes are the same. The multisets of the mem-
branes of the new subtree are identical to the membrane they were copied from.

L′ = L ∪ {(j, L(j)) | j ∈ V ′µ}

The label of each new membrane is identical to its original equivalent membrane.

2.2 Computation of a membrane system

We now explain how the rules of a membrane system are applied to a configuration.
A multiset of rules that are all applicable to this configuration in this time-step is
non-deterministically selected such that it is impossible to add another applicable rule
to the multiset. There is a copy of a rule in the multiset for each individual object it
is applicable to, also this multiset contains at most one rule of types (b)–(f) for each
membrane. This is known as a maximal multiset of rules.

Definition: 2.4 (Maximal multiset of rules). A multiset of rules with respect to a
configuration C of an active membrane system is a multiset R(C) such that R(C) =
[(i, r) | i ∈ Vµ, r ∈ R, r is a rule of type τ and applicableτ (C, r, i) holds ].

This multiset R(C) is said to be a maximal multiset Rmax(C) for a configuration
if it satisfies the following conditions.

1. For each tuple (i, r) ∈ R(C), there is a single unique object in C that r is applied
to (unless r is a type (f) rule).

2. For each membrane i in C, there is at most one (i, r) ∈ R(C) where r is of types
(b)–(f).

3. All the rules can be applied in a single time-step.

4. It is impossible to augment the multiset with another rule that does not violate
the above conditions.

We then apply these rules to each membrane in the system, starting with the most
deeply nested. The rules are applied in the order a, b, c, d, e, es, ew, f.

Given a configuration Ct and a maximal set of rules Rmax(C) for that configuration,
we move to configuration Ct+1 via a parallel application of the rules in the multiset.
This is complicated process and we define a number of functions which we use to
define a time-step of the computation.
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Note that by calculating the multiset of applicable rules from the configuration at
the start of the computation step we ensure that no object generated by the application
of a rule is used by another rule in the same computation step.

First, we define function applyType(τ,R, i, C) which applies all rules from the
multiset Rmax(C) of type τ ∈ {a, b, c, d, e, es, ew, f} associated with membrane i. That
is we construct a new multiset of rules Ri = [r0, r1, . . . , rx−1, rx] which are all the
rules that are applicable to membrane i and its contents. Formally: QRi = {(r, q) |
((i, r), q) ∈ QR}.

applyType(τ,R, i, C) = applyτ (rx, i,

applyτ (rx−1, i,

. . .

applyτ (r1, i,

applyτ (r0, i, C)) . . .))

Next we define the function applyRules(R, i, C) which applies all the rules in
the multiset R that are applicable to the membrane i and outputs the resulting
configuration. The rules are applied in the order a, b, c, d, e, es, ew, f.

applyRules(R, i, C) = applyType(f,R, i,
applyType(ew,R, i,

applyType(es,R, i,
applyType(e,R, i,

applyType(d,R, i,
applyType(c,R, i,

applyType(b,R, i,
applyType(a,R, i, C))))))))

We define the function takeStep(R, C) which applies all applicable rules in R to
each membrane in a configuration C and gives the resulting configuration. The rules
are applied using the function applyRules on each membrane in a depth first ordering
of the membrane structure, that is, starting from the most deeply nested membrane
and working outwards towards the skin. Let (i0, i1, . . . , i|Vµ|−1) be the depth first
ordering of µ.

takeStep(R, C) = applyRules(R, i|Vµ|−1,

applyRules(R, i|Vµ|−2,

. . .

applyRules(R, i1,
applyRules(R, i0, C)) . . .))

Definition: 2.5. Given Ct, a configuration of a membrane system, we say that Ct
yields configuration Ct+1, denoted Ct ` Ct+1, when a maximal multiset of rules Rmax(Ct)
is applied to Ct. That is Ct+1 = takeStep(Rmax(Ct), Ct).
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Definition: 2.6. A computation of a membrane system is a sequence of k config-
urations, denoted Ct `k Ct+k, such that each configuration yields the successor. We
denote an unspecified number of configurations as `∗.

Note that when constructing the maximal multiset of rules for an active membrane
system, the choices are non-deterministic, therefore on a given input there are multiple
possible computations.

A computation halts when a configuration is reached where no more rules are
applicable:

Definition: 2.7. A computation halts when |Rmax(C)| = 0.

Definition: 2.8. Given a configuration Cs of an AM0
−d system Π containing an

object of type object os in a membrane labeled hs. We say an object type os in a
membrane labeled hs eventually evolves object type ot in membrane labeled ht if there
is a computation where an unbroken sequence of rules act link the object type os as it
changes type and membrane until it appears as object type ot in a membrane labeled ht.
In other words the predicate evEv(Cs, os, hs, ot, ht) holds.

evEv(Cs, os, hs, ot, ht) =

true if os = ot, and hs = ht

false if |Rmax(Cs)| = 0 and (os 6= ot, or hs 6= ht)

evEv(Ci, oi, hi, ot, ht) if ∃Rmax(Cs) s. t. Cs ` Ci via Rmax(Cs) where

oi ∈ Oi, hi ∈ Hi and

matches(os, hs, oi, hi,Rmax(Cs)).

The predicate matches(a, h, b, g,R) holds if an object a in membrane h becomes
object b in membrane g via a rule in a given multiset R.

matches(a, h, b, g,R) =

true if (a, a, h,m) ∈ R ∧ b ∈ m ∧ h = g

true if (b, a, g, b) ∈ R ∧ h = L(parent(µ, y)) ∧ g = L(y)

true if (c, a, h, b) ∈ R ∧ g = L(parent(µ, y)) ∧ h = L(y)

true if (e, a, h,B) ∈ R ∧ h = h′ ∧ b ∈ B = {b, c}
true if (es, a, h,B) ∈ R ∧ h = h′ ∧ b ∈ B = {b, b}
true if (ew, a, h,B) ∈ R ∧ h = h′ ∧ b ∈ B = {b, c}
false otherwise.

2.3 Confluent recogniser membrane systems

When we treat membrane systems as language deciding devices to solve decision
problems, we call these recogniser membrane systems. Each computation of a recogniser
system outputs either object yes or no to a specified output membrane in the system
(normally the environment, the root of the membrane structure with label 0). The
output of a computation is read only when it has reached a halting configuration.
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Definition: 2.9. A recogniser membrane system is a membrane system Π such that

1. all computations halt,

2. yes, no ∈ O,

3. the object yes or object no (but not both) appear in the multiset of the membrane
with label 0 (the environment),

4. and this happens only in the halting configuration.

If the yes object arrives in the membrane with label 0 (the environment) the
computation is accepting. If the no object arrives in the membrane with label 0 (the
environment) the computation is rejecting.

A language is a set X = {x1, x2, . . .} ( Σ∗ where Σ is some finite alphabet.
We consider infinite families Π of active membrane systems. We say that a

family Π of membrane systems decides X if for any string x ∈ Σ∗

Π(x) =

accept if x ∈ X,
reject if x /∈ X.

That is that each instance of the problem is solved by some family member.
The family Π is sound with respect to X when, for each x ∈ Σ∗, if there exists an

accepting computation of Π(x) then x ∈ X. The family Π is complete with respect
to X when for each x ∈ Σ∗ if x ∈ X then every computation of Π(x) is an accepting
computation.

A membrane system is deterministic if for each input there is a unique computation.

Definition: 2.10. A membrane system is said to be confluent if it is both sound and
complete. That is, a membrane system Π is confluent if all computations of Π with
the same input x (properly encoded) give the same result; either always “accept” or
else always “reject”.

All membrane systems in this thesis are confluent.

2.4 Uniformity and semi-uniformity

Without further restrictions, recogniser active membrane systems are a non-uniform
model of computation, that is there may be a different device for each input size.
This means, like circuits, we consider an infinite family of recogniser active membrane
systems to cover all potential input strings. However, if we can invest unbounded
amounts of computation in order to construct each member of the family, then it can
potentially solve uncomputable problems. To ensure that the algorithm (or function)
that constructs each member of the family does not artificially increase the set of
problems decided by the family we impose that the constructing algorithm (or function)
is computable within certain restrictions on its time and/or space resource usage.

When the function maps a single input length to a membrane system that decides
all inputs of that length, then the function is called a uniformity condition. When
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the function maps a single input word to a membrane system that decides that input,
then the function is called a semi-uniformity condition.

The notions of uniformity and semi-uniformity were first formally specified for
membrane systems in 2003 [55] the most recent version is to be found in [54].

Definition: 2.11 (Class of problems solved by a uniform family). Let R be a class of
recogniser membrane systems and let t : N→ N be a total function. Let E,F be classes
of functions. The class of problems solved by an (E,F)-uniform family of membrane
systems of type R in time t, denoted (E,F)–MCR(t), contains all problems X such
that:

• There exists an F-uniform family of membrane systems, Π = {Π1,Π2, . . .} of
type R: that is, there exists a function f ∈ F, f : {1}∗ → Π such that f(1n) = Πn,
where |x| = n.

• There exists an input encoding function e ∈ E, e : X ∪ X → MS(I) such
that e(x) is the input multiset, which is placed in a specific input membrane
of Πn, where |x| = n and I ( O is the set of input objects.

• Π is t-efficient: Πn always halts in at most t(n) steps.

• The family Π is sound with respect to (X, e, f); that is, for each x ∈ X there
exists an accepting computation of the system Π|x| on input multiset e(x).

• The family Π is complete with respect to (X, e, f); that is, for each input x ∈ X,
then every computation of the system Π|x| on input multiset e(x) is accepting.

We define the set of languages decided by a uniform family of membrane systems
in polynomial time to be

(E,F)–PMCR =
⋃
k∈N0

(E,F)–MCR(nk).

In this thesis we exclusively use active membrane systems without charges (AM0)
so letting R = AM0 we refer to the set of languages decided by uniform families of
active membrane systems in polynomial time as (E,F)–PMCAM0 .

Semi-uniformity is a generalisation of uniformity. Here a single function (rather
than two) is used to construct the semi-uniform membrane family, and the problem
instance is encoded using objects, membranes, and rules. In this case, for each instance
of x ∈ X ∪X we have a (possibly unique) membrane system which does not need a
separately constructed input.

Definition: 2.12 (Class of problems solved by a semi-uniform family). Let H be a
class of functions. The class of problems solved by a (H)-semi-uniform family of
membrane systems of type R in time t, denoted (H)–MC∗R(t), contains all problems X
such that:

• There exists a H-semi-uniform family Π = {Πx1 ,Πx2 , . . .} of membrane systems
of type R: that is, there exists a function h ∈ H, h : X ∪ X → Π such that
h(xi) = Πxi .
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• Π is t-efficient: Πxn always halts in at most t(|xn|) steps.

• The family Π is sound with respect to (X,h); for each x ∈ X ∪X if there exists
an accepting computation of the system Πx then x ∈ X.

• The family Π is complete, with respect to (X, h); that is, for each x ∈ X every
computation of the system Πx is accepting.

We define the set of languages decided by a semi-uniform family of membrane
systems in polynomial time to be

(H)–PMC∗R =
⋃
k∈N0

(H)–MC∗R(nk).

Observation: 2.13. Every uniform membrane system family can be represented as a
semi-uniform family. Thus (E,F)–PMCR ⊆ (H)–PMC∗R.

In this thesis we exclusively use active membrane systems without charges (AM0)
so we let R = AM0 and refer to (H)–PMC∗AM0 .

Definition: 2.14 (P-semi-uniform active membrane systems). When H = FP then
the set of problems solved by semi-uniform families of active membrane systems is
denoted (P)–PMC∗AM0 (normally written as PMC∗AM0 in the literature).

Definition: 2.15 (P-uniform active membrane systems). When E,F = FP then
the set of problems solved by uniform families of active membrane systems is de-
noted (P,P)–PMCAM0 (normally written as PMCAM0 in the literature)

Definition: 2.16 (L-semi-uniform active membrane systems). When H = FL then
the set of problems solved by semi-uniform families of active membrane systems is
denoted (L)–PMCAM0 .

Definition: 2.17 (L-uniform active membrane systems). When E,F = FL then
the set of problems solved by uniform families of active membrane systems is de-
noted (L, L)–PMCAM0 .

Definition: 2.18 (AC0-semi-uniform active membrane systems). When H = FAC0

then the set of problems solved by semi-uniform families of active membrane systems
is denoted (AC0)–PMCAM0 .

Definition: 2.19 (AC0-uniform active membrane systems). When E,F = FAC0

then the set of problems solved by uniform families of active membrane systems is
denoted (AC0,AC0)–PMCAM0 .

2.4.1 Uniformity definitions from other works

The definitions in Section 2.4 differ slightly in terms of notation from the canonical
uniformity definitions for membrane systems [54] but describe the same concepts.
However in this thesis we frequently change uniformity conditions and aim to be more
in the tradition of uniform families of circuits.

We quote for contrast the definition for uniform families from [54] (note that w ∈
IX). A decision problem for a language X = (IX , θX) where IX = Σ∗ and θX is the
characteristic function for the language X.
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Definition: (Encoding of a family of membrane systems with input [54]). Let X =
(IX , θX) be a decision problem, and Π = {Π(n) : n ∈ N} a family of recogniser P
systems with input membrane. A polynomial encoding of X in Π is a pair (cod, s) of
polynomial time computable functions over IX such that for each instance w ∈ IX , s(w)
is a natural number (obtained by means of a reasonable encoding scheme) and cod(w)
is an input multiset of the system Π(s(w)).

The function s preforms a similar role as function f in Definition 2.11 in that they
both define the members of the family. The function f constructs a membrane system
instance from a number in unary, while the function s takes a problem instance and
maps it to a number representing the appropriate membrane system. The function s

has full access to the input word, the requirement that s is “reasonable” prevents it
from computing a one to one mapping from input word to membrane system. The
domain of function f is restricted to the input word length in unary, this ensures
exponentially fewer membrane systems in a family than input words.

Our encoding function e in Definition 2.11 is a renaming of the cod function.

2.5 Unique labels

Here we describe a normal form for active membrane systems where every membrane
in the membrane system has a unique label.

Normal Form: 2.20. Any AM0 system Π, with m = |Vµ| membranes and l =
|H| labels that halts in t steps can be simulated by a AM0 system, Π′, that has m
membranes, m labels and halts in t steps.

Proof. Given Π we create Π′ by the following method. For each membrane i ∈ Vµ we
add to the set R′ a copy of every rule in R that mentions h = L(i) but replace h with
i in the rule. We then let L′ to be the identity function and let H ′ = Vµ.

Since there is now a copy of each rule for each applicable membrane the system Π′

accepts iff the Π does.

2.6 Dependency Graphs

The dependency graph (introduced by Gutiérrez-Naranjo et al. [30]) is an indispensable
tool for characterising the computational complexity of membrane systems without
dissolution. This technique is reminiscent of configuration graphs for Turing Machines.
Similarly to a configuration graph, a dependency graph helps visualise a computation.
However, it differs in its approach by representing a membrane system configuration
as a subset of vertices rather than as a single vertex in configuration space.

Looking at membrane systems without dissolution as directed graphs allows us
to employ the existing, mature corpse of techniques and complexity results for graph
problems. As we see in Chapters 3 and 4, this greatly simplifies the process of proving
upper-bounds and lower-bounds for such systems.

Each vertex in a dependency graph represents an object-membrane pair. An
edge (a, b) exists in the dependency graph of Π if there is a rule in Π such that the left
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hand side of the rule has an object-membrane pair matching a and the right hand side
has an object-membrane pair matching b. Since membrane dissolution (type (d)) rules
are not allowed, the parent/child relationships in the membrane structure tree of Π does
not change during a computation. Thus when creating the edges for communication
rules (types (b) and (c)) we can find the parent and child membranes for these rules
at the beginning of the simulation and these choices remain the same for the entire
computation (for example, to represent the rule x[ ]h → [x]h, that communicates an
object x into a membrane of label h, it is only necessary to calculate the parent of h
one time in the construction of the dependency graph). Note that in this section, for
the sake of clarity, we overload the notation of multisets with a single object such that
x represents both x ∈ O and also the multiset [x].

Definition: 2.21. Let Π be a recogniser active membrane system without polarizations
and without dissolution rules (AM0

−d). Let R be the set of rules associated with Π.
The dependency graph associated with Π is the directed graph GΠ = (V, E , I, yes, no)
defined as follows:
V = O ×H, E = {((x, h), (y, h′)) :

((a, x, h, m̃) ∈ R ∧ y ∈ support(m) ∧ h = h′) ∨
((b, x, h′, y) ∈ R ∧ h = L(parent(µ, i)) ∧ h′ = L(i)) ∨
((c, x, h, y) ∈ R ∧ h′ = L(parent(µ, i)) ∧ h = L(i)) ∨
((e, x, h, {y, z}) ∈ R ∧ h = h′ ∨
((es, x, h, {y, y}) ∈ R ∧ h = h′ ∨
((ew, x, h, {y, z}) ∈ R ∧ h = h′

We also mention the special vertices yes = (yes, 0) representing the object yes in the
output membrane and no = (no, 0) representing the object no in the output membrane.
Let I = {(x, i) ∈ V | i ∈ Vµ where x ∈M(i)}. If a specific input set, I, is specified we
add a further restriction: x ∈ I. The vertex i ∈ I.

Note that rules of type (f) do not contribute an edge to the graph since no objects
are involved.

Lemma: 2.22. Given an encoding of a membrane system 〈Π〉, its dependency
graph GΠ is constructable in FAC0.

Proof. We provide a constant time CRAM algorithm that when given an encoding of a
membrane system constructs an encoding of the dependency graph for that system. We
assume that every membrane in the system has a unique label (via Normal Form 2.20).

The CRAM algorithm maps the set of rules R to the adjacency matrix AG, n×n
where n = |H| · |O|. We assume that the rules are arranged in a matrix-like structure
with |R| columns and nk rows where nk is the biggest multiset (m̃) in a rule of type
(a) in R. The rules are formatted 〈(τ, x, h, m̃)〉 so the first column stores the type
of the rule, the second the triggering object x, the third the membrane h, and the
remaining nk each store a element in the multiset m. If the rule is not of type (a), then
it has y in the fourth column or the elements {y, z} in the fourth and fifth columns
(all other columns are blank “ ”). This rules matrix is read by an equally sized matrix
of processors, each processor reading an element of the rules matrix. In the first step,
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a column of |R| processors identifies the type of rule, the remaining processors behave
differently depending on type.

If the rule is of type (a), it is formatted (a, x, h, m̃). One processor reads the
object x and the label h, and the other nk processors each read a single object y in m̃.
The values x and h are stored in shared registers. If one of the nk processors reads
a blank spacing character, it writes nothing out. The other processors who read
an y ∈ m then read the values x and h and write out a 1 to element aG, (x,h),(y,h)

in the adjacency matrix. If two or more processors try to write to the same output
register, only one (it does not matter which) succeeds.

If the rule is of type (b), it is formatted 〈(b, x, h′, y)〉: to write out the edge for
this rule the CRAM needs to refer to the membrane structure µ of the encoded as
adjacency matrix Aµ in membrane system 〈Π〉. Three processors load x, h′ and y,
(note that nk − 1 of the processors read a blank symbol “ ” and do nothing). However
to write out the edge we need to know the parent membrane of h′, this value is written
to a shared register. There there is a processor for each column p in Aµ, each reads
the variable h′ from the shared register, if element aµ, p,h′ = 1 is then that processor
writes p to a shared register (only one processor will do this since µ is a tree). The
processor for the rule then reads the value p and writes a 1 in position aG, (x,p),(y,h′)
to the output register.

If the rules is of type (c), the rule format is 〈(c, x, h, y)〉. Again we need to make
reference to the membrane structure µ to find the parent of h. The process is similar
to that for type (b) rules except the processor writes out a 1 to aG, (x,h),(y,p).

If the rule is of type (e), (es), or (ew) then it is in the format 〈(τ, x, h, {y, z})〉
(where τ ∈ {e, es, ew}). In this case the CRAM writes 1 to aG, (x,h),(y,h), it writes out
a second 1 at aG, (x,h),(y,h) if the rule is of type (es) or (ew).

Rules of type (f) are ignored by the algorithm.
Thus a dependency graph is constructable by a CRAM (hence in FAC0) given an

encoded membrane system 〈Π〉.

Dependency graphs are a traumatic simplification of membrane systems and it can
be difficult to believe that they can be used to decide if an AM0

−d system accepts.
We now show a proof of correctness that is designed to make the reader feel more
comfortable with dependency graphs by describing a series of small steps to lead us
from a membrane system to a dependency graph. For a more laconic proof see the
papers by Gutiérrez-Naranjo et al. [30, 29].

Lemma: 2.23. Given a recogniser AM0
−d system Π (in unique labels normal form)

and its dependency graph G, there exists a path from an object in I to yes, and no
paths from an object in I to no iff Π halts in an accepting configuration.

Proof. Given the membrane system Π we first convert it to the unique label normal
form (Normal Form 2.20).

We now simulate a computation of a AM0
−d system using as our data structure, a

graph G = (V,E) and a set of counters c : V → N0 associated to each vertex. For each
element of O×H there is a vertex in V . We define the special vertices yes = (yes, 0),
no = (no, 0) and the set I of objects in membranes in the initial configuration. For
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each vertex (o, h) in G there is an associated counter such that c((o, h)) = QM(h)(o),
it is it store the multiplicity of object type o in membrane h (note that due to the
unique labels normal form, H = Vµ and L is the identity). The graph G combined
with c represent the initial configuration of the system.

Then consider each membrane (h) in depth first order (w.r.t the membrane struc-
ture µ), we apply the rules in the maximal multiset for this membrane configuration
in the following order:

• For each rule (a, o, h, m̃) ∈ R, subtract 1 from c((o, h)) and then for each u ∈ m̃
add an edge to V from (o, h) to (u, h) and add 1 to c((u, h)).

• For each rule (b, o, h, u), add an edge from (o,parent(µ, h)) to (u, h), then
subtract 1 from c((o,parent(µ, h))) and add 1 to c((u, h)).

• For each rule (c, o, h, u), add an edge from (o, h) to (u,parent(µ, h)), then subtract
1 from c((o, h)) and add 1 to c((u,parent(µ, h))).

• For each rule (e, o, h, {u, v}), add an edge from (o, h) to (u, h) and then from (o, h)
to (v, h), subtract 1 from c((o, h)), double all counters c((x, h)) for all x ∈ O,
then add 1 to the counter c((u, h)) and add 1 to the counter c((v, h)). Add an
edge from (o, h) to (u, h) and to (v, h) increasing their counters by 1.

• For each rule (es, o, h, {u, u}), add an edge from (o, h) to (u, h), subtract 1
from c((o, h)), double all counters c((x, h)) for all x ∈ O, then add 2 to the
counter c((u, h)).

• For each rule (ew, o, h, {u, v}), add an edge from (o, h) to (u, h) and then
from (o, h) to (v, h), subtract 1 from c((o, h)), double the counters, c((x, g)) for
all objects x ∈ O in membranes g ∈ subtree(µ, h). Add 1 to the counter c((u, h))
and to c((v, h)).

• For each rule (f, {l,m}, h, {}), double the counters of c((x, g)) for all objects
x ∈ O and all membranes g ∈ subtree(µ, h)\(subtree(µ,m) ∪ subtree(µ, l)).

The graph now represents the configuration of the system Π after a single time-step.
Now iterate the process until there are no more applicable rules, at this point the
graph G and its associated counters c represent Π in a halting configuration.

If the membrane system has an accepting (rejecting) computation then there is a
path from an object in I to vertex yes (respectively no) in the graph G. If there is a
rule that evolves o to u and changes membrane from h to g then the above algorithm
adds an edge to G from vertex (o, h) to (u, g). So if o in membrane h eventually
evolves to u in membrane g then there is a path from vertex (o, h) to (u, g). Thus if
the membrane system halts in an accepting (or rejecting) computation then there is a
path in G from an object o in one of the initial object multisets ((o, h) ∈ I), to yes

(or no ).
If there is a path in G from I to yes (respectively no) then the membrane system

has an accepting (rejecting) computation. The algorithm described only adds an edge
from one vertex (o, h) to another (u, g) to G if there is a rule that evolves o to u and
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changes membrane from h to g. This means there is a path from one vertex (o, h) to
another (u, g) only if o in membrane h eventually evolves to u in membrane g. If there
is a path in G from an object o in one of the initial object multisets ((o, h) ∈ I) to yes

(or no ), then the membrane system halts in an accepting (or rejecting) computation.
This property still holds when we add to G all rules in R that are not represented

as edges in the graph. This does not add any new paths from I to yes or no since
the new edges are from rules that are not reachable from any object in an initial
membrane multiset.

We discard the counters c having established that existence of paths through the
graph G to yes and no are equivalent to the membrane system having an accepting or
rejecting computation. The graph G is now identical to the graph G for the membrane
system Π.
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Chapter 3

Semi-uniform

characterisations of NL and L

without dissolution

In this chapter we present the first of our complexity results for membrane systems
using uniformity conditions below P. First we re-examine an existing result using
tighter uniformity conditions and then show a new way to adjust the computing power
of membrane systems. Specifically we show that semi-uniform families of AM0

−d

systems,

• when using the (standard) recogniser definition, characterise NL (improving the
previous P upper-bound [30]).

• when using a generalisation of the recogniser definition (that makes them easier
to program), also characterise NL.

• when using a restriction of the recogniser definition, characterise L.

The first two results (which appear in Sections 3.1 and 3.2) hold for all semi-uniformity
conditions computable in non-deterministic logspace while the third (found in Sec-
tion 3.3) holds for those computable in deterministic logspace. However, if a semi-
uniformity condition constructs a membrane system using more resources than are
needed to evaluate the resulting membrane system, then the power of the semi-
uniformity condition defines the problems that the family can solve. This effect is
visualised in Figure 3.1.

In this chapter we introduce a new technique to prove our characterisations
which takes advantage of the close similarity between semi-uniformity conditions and
reductions. While it is known that a AM0

−d membrane system can be represented as
a dependency graph (see Section 2.6), we prove in Lemma 3.2 that each dependency
graph can be converted in FAC0 to an AM0

−d membrane system of a very restricted
form. We then define a reachability problem for dependency graphs such that there
is a path between two vertices iff the corresponding membrane systems accept. By
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Figure 3.1: Characterisations by semi-uniform families of (general) recogniser AM0
−d

systems are denoted by , those by semi-uniform families of restricted recogniserAM0
−d

systems are denoted by . The P-semi-uniform P characterisation [29] is denoted .

giving a reduction from X, a complete problem for some class, to a dependency graph
reachability problem and then converting the reachability problem to a membrane
system we are providing a semi-uniform family to solve X.

We now observe that AM0
−d systems can be significantly simplified.

Normal Form: 3.1. An AM0
−d system Π, is in environmental normal form if it

(i) has no membranes other than the environment, (ii) and uses only rules of type (a).

Lemma: 3.2. Given a dependency graph G = (V, E , I, yes, no) we can construct
in FAC0 a recogniser active membrane system ΠG in environmental normal form that
accepts iff there is a path from i ∈ I to yes in G.

Proof. We let the vertices of the dependency graph be the objects of the membrane
system. We then convert the edges of the dependency graph into object evolution
rules.

The membrane system ΠG : (i) uses a single membrane with label 0 and (ii) each
edge in G becomes a rule of type (a).
The system ΠG = (OG , µG ,MG , HG , LG , RG) where

OG = V,
µG = ({0}, ∅),
MG = {(0, {i , 1}) | i ∈ I},
HG = {0},
LG = {(0, 0)},
RG = {(a, v, 0, S(v)) | v ∈ V} where S(v) = [s ∈ V | (v, s) ∈ E ] (note that the
multiset S(v) is a set).

The mapping from G to RG is surjective, there is no rule in ΠG that does not have
a corresponding edge in G. Thus it is the case that path(i , yes ) in G ⇔ i eventually
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evolves yes in membrane 0 of ΠG and that path(i , no ) in G ⇔ i eventually evolves no
in membrane 0 of ΠG .

Apart from the function S(x), this construction is more or less a direct mapping
and is thus computable by a constant time CRAM. To compute the function S(x) in
constant time, a CRAM writes “(a, x, 0, ”, to its output registers, this is the first part
of the type (a) rule. There are |V| processors, each designated to read a single element
of row x in the adjacency matrix A of G. Each processor for row x writes out “, y” to
their output register if the element ax,y = 1 or the blank symbol “ ” if ax,y = 0. A
processor writes “)” after the |Gv| objects and blank symbols to end the rule. Thus
the construction is in FAC0.

3.1 Recogniser membrane systems and NL

In this section we prove that semi-uniform families of recogniser AM0
−d systems

characterise NL. This is the “standard” definition of recogniser membrane systems
which we now restate.

Definition: (Restatement of Definition 2.9). A recognizer membrane system, Π, is a
membrane system such that:

1. all computations halt;

2. yes, no ∈ O;

3. the object yes or object no (but not both) appear in the multiset of the membrane
with label 0 (the environment),

4. and this happens only in the halting configuration.

If the yes object arrives in the membrane with label 0 the computation is accepting.
If the no object arrives in the membrane with label 0 the computation is rejecting.

Points 3 and 4 from Definition 2.9 allow us to define the following subsets of the
objects O in a AM0

−d system. Oyes = {o | o ∈ O and o eventually evolves yes in
the membrane with label 0}, Ono = {o | o ∈ O and o eventually evolves no in the
membrane with label 0}, and Oother = O\(Oyes ∪Ono).

Lemma: 3.3. In recogniser AM0
−d system Π, Oyes ∩Ono = ∅ .

Proof. Assume that object o ∈ Oyes ∩ Ono, this implies that both a yes and a no

object are produced by the system which contradicts point 3 of Definition 2.9.

We prove that a dependency graph with the following properties can be converted
to a standard recogniser AM0

−d system as in Definition 2.9. A dependency graph
satisfying these conditions is illustrated in Figure 3.2.

Lemma: 3.4. A dependency graph G yields a standard recogniser AM0
−d membrane

system ΠG when converted by the method described in Lemma 3.2 if G has the following
properties:
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1. The graph G is acyclic.

2. The vertices yes and no are in V.

3. The set V must contain the subsets Vyes = {v ∈ V | path(v, yes)}, Vno = {v ∈
V | path(v, no)} such that Vyes ∩ Vno = ∅ and i ∈ Vyes ∪ Vno.

4. The path from vertex i to yes (or i to no) is the longest path in G starting at i.

Proof. We show how each of the properties mentioned above ensures that a membrane
system ΠG constructed from G using the technique in Lemma 3.2 is a recogniser
membrane system as in Definition 2.9.

1. If the graph is acyclic then ΠG must halt, this satisfies point 1 from Definition 2.9.

2. Vertices yes and no correspond to the objects yes and no in membrane 0, this
satisfies point 2 of Definition 2.9.

3. The subsets Vyes and Vno imply that the objects in ΠG can be divided into
sets Oyes and Ono so that object yes or no but not both arrive in the membrane
with label 0 in ΠG . This satisfies point 3 of Definition 2.9.

4. If the path to vertex yes or vertex no is the longest in the graph then the
corresponding object yes or object no will arrive in membrane 0 in the final step
of the computation of ΠG which satisfies point 4 of Definition 2.9.

i yes

no

I

Figure 3.2: An example dependency graph G for some unspecified standard recogniser
membrane system (Definition 2.9). Note that it satisfies all points of Lemma 3.4. For
example, there are no directed paths from the vertices in Vyes ( ) to the vertices of Vno
( ).

We define the problem STDREC which is a reachability problem on the set of
dependency graphs that have all the properties mentioned in Lemma 3.4.

Problem: 3.5 (STDREC).
Instance: A dependency graph G = (V, E , {i}, yes, no) where i, yes, no ∈ V, where G
has all the properties mentioned in Lemma 3.4.
Question: Is there a directed path from i to yes?
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We state the problem STCON, the canonical NL-complete problem [35]. This
problem is also commonly known as PATH, REACHABILITY, and GAP.

Problem: 3.6 (STCON).
Instance: A directed (possibly cyclic) graph G = (V,E, s, t) where s, t ∈ V .
Question: Is there a directed path in G from s to t?

The problem STCON is NL-complete for both cyclic and acyclic graphs.

Theorem: 3.7. STDREC is NL-complete under AC0 reductions.

Before proving Theorem 3.7 we explain an important complication. If we wish to
reduce G, an STCON instance, directly to G, an instance of STDREC, it is important
to ensure that path(i , no ) holds in G iff path(s, t) does not hold in G (which is needed
to satisfy the requirements of Lemma 3.4). Our reduction simultaneously uses both
an STCON instance and its complement problem coSTCON and then use both graphs
to construct an instance of STDREC. To achieve this, one potential solution would be
to take an instance of STCON and explicitly construct a complementary coSTCON

instance via the construction in [31, 69]. Instead, we give a simpler proof via an
NL-complete problem which already has the property we require. We use this third
problem to prove Theorem 3.7.

Problem: 3.8 (coSTCON).
Instance: A directed (possibly acyclic) graph G′ = (V ′, E′, s′, t′) where s′, t′ ∈ V ′ .
Question: Is there no directed path in G′ from s′ to t′?

Problem: 3.9 (STCON–coSTCON).
Instance: A directed (possibly acyclic) graph G = (V, V ′, E,E′, s, s′, t, t′) with two
disjoint components (V,E) and (V ′, E′) and where s, t ∈ V and s′, t′ ∈ V ′ where there
is a path from s′ to t′ iff there is no path from s to t.
Question: Is there a path in G from s to t?

Lemma: 3.10. Both acyclic and cyclic STCON–coSTCON are AC0 complete for NL.

Proof. The problem STCON is AC0 complete for NL and so all problems in NL are
AC0 reducible to STCON. Likewise, coSTCON is AC0 complete for coNL and so all
problems in coNL are AC0 reducible to coSTCON. Immerman and Szelepcsényi showed
that NL = coNL [31, 69], this immediately implies that that STCON is AC0 reducible to
coSTCON. So given an instance of STCON we can reduce it to coSTCON and combine
the two problem instances into a third NL-complete problem called STCON–coSTCON.

An instance of (acyclic) STCON–coSTCON is trivially in NL.

We are now ready to show acyclic STCON–coSTCON ≤AC0 STDREC.

Proof. Given an instance (V, V ′, E,E′, s, s′, t, t′) of acyclic STCON–coSTCON, we
construct a dependency graph G = (V, E , i , yes , no ). To ensure G has Property 4 in
Lemma 3.4, that yes and no are at the end of the longest paths in the graph, we add
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a directed path of |V |+ |V ′|+ 1 edges leading from t to yes and from t′ to no .

Vy = {v1, . . . , v|V |+|V ′|}
Vn = {v′1, . . . , v′|V |+|V ′|}

Ey = {(t, v1)} ∪ {(vi, vi+1) | i ∈ {1, . . . , |V |+ |V ′| − 1}} ∪ {(v|V |+|V ′|, yes )}
En = {(t′, v′1)} ∪ {(v′i, v′i+1) | i ∈ {1, . . . , |V |+ |V ′| − 1}} ∪ {(v′|V |+|V ′|, no )}

So the final dependency graph G has V = V ∪ V ′ ∪ {i , yes , no } ∪ Vy ∪ Vn and E =
E ∪ E′ ∪ Ey ∪ En ∪ {(i , s), (i , s′)}.

To ensure G has Property 1 of Lemma 3.4 we consider only acyclic instances
of STCON–coSTCON (note the paths Ey and En are acyclic). We see that G has
Properties 3 and 2 from Lemma 3.4 because Vyes ∩ Vno = ∅ and i ∈ Vyes ∪ Vno
since (V,E) and (V ′, E′) are disjoint and only one of path(s, yes ) and path(s′, no )
holds, thus i (which is connected to s and s′) can be in Vyes or Vno but never both.

Since our construction does not modify the input graphs and we connect i to s
and s′ it is clear
• that path(i , yes ) in G iff path(s, t) holds in graph G, and
• that path(i , no ) in G iff path(s, t) does not hold in graph G.
This reduction is straightforward to compute in constant time with a CRAM, the

extra edges and vertices added to the graph are output by two sets of |V |+ |V ′|+ 1
processors that each write out an edge based on their processor number. The rest of
the reduction is straightforward and is computable in constant time by a CRAM and
thus is computable in FAC0.

We show STDREC ≤AC0 STCON. Given an instance G = (V, E , i , yes , no )
of STDREC, we construct G = (V,E, s, t) such that V = V and E = E and let s = i

and t = yes . Clearly there is a path from s to t in G iff there is a path from i

to yes in the dependency graph G. This reduction is computable in constant time by
a CRAM, and thus in FAC0.

Theorem: 3.11. (C)–PMC∗AM0−d
= NL using the standard recogniser conditions from

Definition 2.9 for all C ∈ {AC0,NC1, L,NL}.

Proof. Given an acyclic instance x of STCON–coSTCON an NL-complete problem,
we reduce it in FAC0 (as in Theorem 3.7) to an instance of STDREC which satisfies
all points in Lemma 3.4. The instance G of STDREC is convertible in FAC0 (using
the technique in Lemma 3.2) to a recogniser membrane system ΠG which accepts
iff x ∈ STCON–coSTCON and rejects otherwise. These two FAC0 algorithms, applied
in sequence, describe a semi-uniform family of recogniser AM0

−d systems that solves
an NL-complete problem, hence NL ⊆ (AC0)–PMC∗AM0−d

. If we increase the power of
the reductions to classes mentioned in the statement, there is no increase in the set of
problems solvable, that is STCON–coSTCON ≤NL STDREC.

Now we show that a semi-uniform family of recogniser AM0
−d systems can recognise

no more than NL. We have seen that any AM0
−d recogniser membrane system Π can

be converted to an instance of STDREC by an FAC0 algorithm via Lemma 2.22. We
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then showed in Theorem 3.7 that any instance of STDREC can be reduced in FAC0 to
an instance of STCON. This implies that a non-deterministic logspace Turing machine
can decide if a recogniser AM0

−d accepts by first converting it to an instance of STCON,
hence (AC0)–PMC∗AM0−d

⊆ NL. If the semi-uniformity condition is computable in one
of the classes mentioned in the statement, there is no increase in the complexity of
the problem since the reductions are all contained in FNL.

3.2 General recogniser systems and NL

We introduce a generalisation of the standard definition of recogniser membrane
systems. With this more general definition it is possible for a membrane system
computation to have both yes and no objects in the environment. However, the first of
these objects to arrive in the environment determines if the computation is accepting
or rejecting. (Note that it is forbidden for both yes and no objects to arrive for the
first time in the environment in the same time-step.) We now define general recogniser
membrane systems and then show that the problems solved by semi-uniform families
of general recogniser AM0

−d systems is exactly the class NL. This characterisation
shows that general recogniser membrane systems (for semi-uniform families of AM0

−d

systems) have equal power to the standard recogniser systems discussed in Section 3.1.

Definition: 3.12. A general recogniser membrane system Π is a membrane system
such that:

1. yes, no ∈ O;

2. the object yes and the object no may not arrive in the membrane with label 0
(the environment) for the first time, in the same time-step.

If the yes object arrives in the membrane with label 0 before object no, the
computation is accepting. If the no object arrives in the membrane with label 0 before
object yes, the computation is rejecting. Note that computations may be infinite.

We prove that a dependency graph with the following properties can be converted
to a general recogniser AM0

−d system as in Definition 3.12. A dependency graph
satisfying these conditions is illustrated in Figure 3.3.

Lemma: 3.13. A dependency graph G yields a general recogniser AM0
−d membrane

system ΠG when converted by the method described in Lemma 3.2 if G has the following
properties:

1. The vertices yes and no are in V.

2. The length of the shortest path from i to yes is not equal to the length of the
shortest path from i to no.

Proof. We show how each of the properties mentioned above ensures that a membrane
system ΠG (constructed from G using the technique in Lemma 3.2) is a general
recogniser membrane system as in Definition 3.12.
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1. Vertices yes and no correspond to objects yes and no in membrane 0, this
satisfies point 1 of Definition 3.12.

2. If the length of the shortest path from i to yes is not equal to the length of
the shortest path from i to no then in a membrane system represented by this
graph, object yes or no arrive in membrane with label 0, but not at the same
time, satisfying point 2 of Definition 3.12.

i yes

no

I

Figure 3.3: An example dependency graph G for some unspecified general recogniser
membrane system (Definition 3.12). Note that it satisfies all points of Lemma 3.13.
This example represents a rejecting computation since the minimum directed path
from i to no is of length 6, while the minimum directed path from an element of I
to yes is of length 7.

We define the problem GENREC which is a reachability problem on the set of
dependency graphs that have all the properties mentioned in Lemma 3.13.

Problem: 3.14 (GENREC).
Instance: A dependency graph G = (V, E , {i}, yes, no) where i, yes, no ∈ V, where G
has all the properties mentioned in Lemma 3.13.
Question: Is the length of the shortest directed path from i to yes less than the length
of the shortest directed path from i to no?

Theorem: 3.15. GENREC is NL-complete under AC0 reductions.

Proof. First we show STCON ≤AC0 GENREC. Given an instance G = (V,E, s, t)
of STCON, we construct a dependency graph G = (V, E , i , yes , no ). Let i = s. The
set of vertices is V = V ∪{yes , no }∪{v1, . . . , v|V |}. We construct the set of edges such
that E = E ∪ {(t, yes ), (s, v1), (v|V |, no )} ∪ {(vi, vi+1) | i ∈ {1, . . . , |V | − 1}}. Clearly
there is a path from i to yes iff there is a path from s to t in G. By adding a path of
length |V |+ 1 edges from i to no we are providing a path longer than any (acyclic)
path to yes (satisfying point 2 of Observation 3.13). This reduction is computable by
a constant time CRAM, the extra edges and vertices added to the graph are output
by |V |+ 1 processors that each write out an edge based on their processor number.
Thus this reduction is computable in FAC0.
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We now show that GENREC ∈ NL, by providing an algorithm that is computable
by a Turing machine storing a single binary counter x.

let x = 0
for x from 0 to |V|

if there exists a path from i to yes of length x then
accept

else if there exists a path from i to no of length x then
reject

end if
end for

Deciding if there is a path of length x between two vertices is computed with the
standard STCON algorithm [35] with an added line that rejects if length not equal
to x. This Turing machine uses a non-deterministic algorithm and a single binary
counter to decide GENREC and so the problem is in NL.

Theorem: 3.16. (C)–PMC∗AM0−d
= NL using the general recogniser conditions from

Definition 3.12 for all C ∈ {AC0,NC1, L,NL}.

Proof. Given an instance x of STCON, an NL-complete problem, we reduce it in FAC0

(as in Theorem 3.15) to an instance of GENREC which satisfies all points in Lemma 3.13.
The instance G of GENREC is convertible in FAC0 (using the technique in Lemma 3.2)
to a general recogniser membrane system ΠG which accepts iff x ∈ STCON and rejects
otherwise. These two FAC0 computable algorithms, applied in sequence, describe a
semi-uniform family of general recogniser AM0

−d systems that solves an NL-complete
problem, hence NL ⊆ (AC0)–PMC∗AM0−d

. If we increase the power of the reductions to
classes mentioned in the statement, there is no increase in the set of problems solvable,
that is STCON ≤NL GENREC.

Now we show that a semi-uniform family of general recogniser AM0
−d systems

can recognise no more than NL. We have seen that any AM0
−d general recogniser

membrane system Π can be converted to an instance of GENREC by an FAC0 algorithm
via Lemma 2.22. We then showed via Theorem 3.15 that any instance of GENREC is
decided by a logspace non-deterministic Turing machine, hence (AC0)–PMC∗AM0−d

⊆ NL.
If the semi-uniformity condition is computable in one of the classes mentioned in the
statement, there is no increase in complexity of the problem since the reductions are
all contained in NL.

3.3 Restricted recogniser systems and L

We now consider a restriction on the standard definition of recogniser membrane
systems. In Definition 2.9 it is forbidden for an object that eventually evolves a yes

to also yield a no (and vice versa). Now we further restrict the system so that all
objects in the system must eventually evolve either a yes or no object. Notice that
this restriction forbids objects that do not contribute to the final answer (accept or
reject) and forbids rules of the form [a→ λ] where λ is the empty word. We now
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define this acceptance condition and then go on to show that the class of problems
solved by semi-uniform families of such restricted recogniser AM0

−d systems is exactly
the class L.

Definition: 3.17. A restricted recogniser membrane system, Π, is a membrane
system such that:

1. all computations halt;

2. yes, no ∈ O;

3. the object yes or object no (but not both) arrive in the membrane with label 0
(the environment);

4. and this happens only in the halting configuration;

5. each o ∈ O must, via a sequence of zero or more developmental rules, eventually
evolve either yes or no in the membrane with label 0, but not both.

If the yes object arrives in the membrane with label 0 the computation is accepting.
If the no object arrives in the membrane with label 0 the computation is rejecting.

Points 3 and 4 from Definition 3.17 allow us to define the following subsets of
the objects O in a AM0

−d system. Oyes = {o | o ∈ O and o eventually evolves yes

in the membrane with label 0}, Ono = {o | o ∈ O and o eventually evolves no in
the membrane with label 0}. Since this is a restriction of the standard definition,
we inherit Lemma 3.3 which states that Oyes ∩Ono = ∅. We also have the following
consequence of the restriction.

Lemma: 3.18. In restricted recogniser AM0
−d system Π, O\(Oyes ∪Ono) = ∅.

Proof. Assume that object o ∈ O is such that o /∈ Oyes ∪ Ono, this implies that o
does not eventually evolve a yes nor a no object in the membrane with label 0. This
contradicts point 5 of Definition 3.17.

We prove that a dependency graph with the following properties can be converted
to a restricted recogniser AM0

−d system as in Definition 3.17. A dependency graph
satisfying these conditions is illustrated in Figure 3.4.

Lemma: 3.19. A dependency graph G yields a restricted recogniser AM0
−d membrane

system ΠG when converted by the method described in Lemma 3.2 if G has the following
properties:

1. The graph G is acyclic.

2. The vertices yes and no are in V.

3. The set V must contain the subsets Vyes = {v ∈ V | path(v, yes)}, Vno =
{v ∈ V | path(v, no)} such that Vyes ∩ Vno = ∅ (see Lemma 3.3) and i ∈ Vyes
or i ∈ Vno.

4. The path from vertex i to yes or no is the longest in G starting at i.
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5. V\Gyes ∪ Vno = ∅ (see Lemma 3.18).

Proof. We show how each of the properties mentioned above ensures that a membrane
system ΠG , constructed from G using the technique in Lemma 3.2, is a restricted
recogniser membrane system as in Definition 3.17.

1. If the graph is acyclic then ΠG must halt, this satisfies point 1 from Definition 3.17.

2. Vertices yes and no correspond to the objects yes and no in membrane 0, this
satisfies point 2 of Definition 3.17.

3. The subsets Vyes and Vno imply that the objects in ΠG can be divided into
sets Oyes and Ono so that every object in ΠG must eventually evolve yes or no

but not both. This satisfies point 3 of Definition 3.17.

4. If the path to vertex yes or vertex no is the longest in the graph then the
corresponding object yes or object no will arrive in membrane 0 in the final step
of the computation of ΠG which satisfies point 4 of Definition 3.17.

5. This ensures that every object in the system evolves to either a yes or a no

object satisfying point 5 of Definition 3.17.

i yes

no

I

Figure 3.4: An example dependency graph G for some unspecified restricted recogniser
membrane system (Definition 3.17). Note that the graph consists of exactly two
disjoint components.

We define the problem RSTREC which is a reachability problem on the set of
dependency graphs that have all the properties mentioned in Lemma 3.19.

Problem: 3.20 (RSTREC).
Instance: A dependency graph G = (V, E , {i}, yes, no) where i, yes, no ∈ V, where G
has all the properties mentioned in Lemma 3.19.
Question: Is there a directed path from i to yes?

We state the L-complete problem Directed Forest Accessibility (DFA) [19].
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Problem: 3.21 (Directed Forest Accessibility (DFA) [19]).
Instance: An acyclic directed graph G = (V,E, s, t) where s, t ∈ V and each vertex
has out-degree of 0 or 1.
Question: Is there a directed path from s to t?

Theorem: 3.22. RSTREC is L-complete under AC0 reductions.

Proof. First we show DFA ≤AC0 RSTREC.
Given an instance G = (V,E, s, t) of DFA, we construct a dependency graph G =

(V, E , i , yes , no ). We let i = s and the set of vertices V = V ∪ {yes , no }. The
edges of the dependency graph are E = E\{(t, v) | v ∈ V } ∪ {(t, yes )} ∪ {(v, no ) | v ∈
V and v has out-degree 0} .

To ensure that the vertex yes is at the end of every path that leads to t, E has
edge from t to yes and does not include edges from E that leave t. G has Property 1
from Lemma 3.19 since G (as a forest) is acyclic, our reduction ensures G is acyclic
also. To ensure G has property 3 of Lemma 3.19 we add extra edges to E connecting
those vertices in G that cannot reach t (vertices with out-degree 0) to no . Since all
vertices in G with out-degree 0 (except t) now point to no there cannot exist a vertex
that is not on a path to yes or no satisfying point 5 in Lemma 3.19. This, combined
with the edge from t to yes gives G Property 4 of Lemma 3.19 by ensuring that only
the vertices yes and no have out-degree 0. Clearly there is a path from i to yes

in G iff there is a path from s to t in graph G.
We now explain how a CRAM writes an edge for every vertex with out-degree 0

in constant time. There is a processor for each element ax,y of the adjacency matrix
of the graph G and a shared register rx = 0 for each x ∈ V . In the first step these
processors read their matrix element, if ax,y = 1 they write “1” to register rx. In the
next time-step a processor for each x ∈ V reads the value of rx. If rx = 0 then there
was no edge leaving x in G and the processor writes an edge from (x, no ) in the set E
to its output register. The rest of the reduction is a straightforward mapping and
easily shown to be computable by a CRAM in constant time. Thus this reduction can
be computed in FAC0.

Now we show RSTREC is contained in L by outlining a deterministic logspace
Turing machine algorithm that decides RSTREC. The input to the algorithm is an
instance G = (V, E , i , yes , no ) of RSTREC.

let x = i

for each (a, b) in E
if a = x then

if b = yes then accept
else if b = no then reject
else x = b

end if
end for

Starting with the input vertex i , the algorithm follows a path through the graph,
storing only its current position in a variable. If it reaches the vertex no the al-
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gorithm rejects, if it reaches yes the algorithm accepts. The algorithm correctly
decides RSTREC since no vertex in G that leads to yes can also be on a path to no

(non-yes non-no sink vertices are forbidden). Thus, it does not matter which par-
ticular edge is followed leaving a vertex, all lead to the correct answer. Since only
one variable of length |V| is stored at any time, the algorithm uses O(log n) space
(where n = |V| is the input length). Thus RSTREC ∈ L.

Theorem: 3.23. (C)–PMC∗AM0−d
= L using the restricted recogniser conditions from

Definition 3.17 for all C ∈ {AC0,NC1, L}.

Proof. Given an instance x of DFA, an L-complete problem, we reduce it in FAC0 (as
in Theorem 3.22) to an instance of RSTREC which satisfies all points in Lemma 3.19.
The instance G of RSTREC is convertible in FAC0 (using the technique in Lemma 3.2)
to a restricted recogniser membrane system ΠG which accepts iff x ∈ DFA and rejects
otherwise. These two algorithms in FAC0, applied in sequence, describe a semi-uniform
family of restricted recogniser AM0

−d systems that solves an NL-complete problem,
hence NL ⊆ (AC0)–PMC∗AM0−d

. If we increase the power of the reductions to classes
mentioned in the statement, there is no increase in the set of problems solvable, that
is DFA ≤L RSTREC.

Now we show that a semi-uniform family of restricted recogniser AM0
−d systems

can recognise no more than L. We have seen that any AM0
−d restricted recog-

niser membrane system Π can be converted to an instance of RSTREC by an al-
gorithm in FAC0 algorithm via Lemma 2.22. We then showed via Theorem 3.22
that any instance of RSTREC decided by a logspace deterministic Turing machine,
hence (AC0)–PMC∗AM0−d

⊆ L. If the semi-uniformity condition is computable in one
of the classes mentioned in the statement, there is no increase in complexity of the
problem since the reductions are all contained in L

3.4 Discussion

In this chapter we have shown three characterisations that were made possible by
using uniformity conditions below P. The first (in Section 3.1) improves the exist-
ing [30] P upper-bound for semi-uniform families of recogniser AM0

−d systems to
an NL characterisation.

The result in [30] claims a P characterisation for semi-uniform families of AM0
−d

systems, however these families “solve” P-complete problems by using the semi-
uniformity condition to solve it for them. Thus, this P lower-bound is dependant on
the semi-uniformity condition being P-hard. We claim that our NL characterisation is a
more truthful one for semi-uniform AM0

−d systems since it is robust under uniformity
conditions computable in a range of classes in FNL (see Figure 3.1). Thus we see in
this chapter that choosing an appropriate uniformity condition is crucial to analysing
the true power of a membrane system.

It is curious that a system that can generate an exponential number of objects and
membranes is limited to solving problems in non-deterministic logspace. It becomes
more obvious why this is the case when we recall that such systems can be represented
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using a single membrane with only a polynomial increase in the number of objects
(see Normal Form 3.1). Moreover, the technique of using dependency graphs to
predict AM0

−d systems implies object multiplicities are not necessary for AM0
−d

systems to recognise a language. Thus, we can replace multisets with sets in the active
membrane system definition and the class (AC0)–PMC∗AM0−d

remains unchanged.
In Section 3.2 we introduced general recogniser membrane systems, these systems

are simpler to program since the restrictions on a system (i) to produce only the
output object yes or the output object no, and (ii) only in the final step of the
computation, are relaxed. Despite this, we have shown that semi-uniform families
of general AM0

−d systems also characterise NL. Furthermore, our results prove the
existence of a “complier” which, via reductions, translates a system that uses the
general definition into a system that uses the standard definition. This is significant
since we can more easily program a general recogniser system, then, convert it to a
standard recogniser for which it is often easier to prove certain properties such as
correctness.

This chapter also showed that it is possible to change the complexity of a membrane
system by adjusting the definition of a valid computation and not just by varying
the type of rules allowed. We were inspired by how the complexity of STCON drops
from NL to L when the graph has a restricted shape. We added a restriction to the
recogniser framework that forces the dependency graphs of AM0

−d systems to have
the same property. The class of problems solvable by semi-uniform families of AM0

−d

systems using this restricted definition correspondingly dropped to L. This technique
could prove very useful to when trying to characterise other complexity classes such
as P and PSPACE.

Finally, the techniques we have employed in this chapter reveal that semi-uniformity
is closely related to the notion of reductions. Thus, similarly to how a reduction can
turn a complicated problem into a simpler one, a semi-uniformity condition has the
potential to disguise the true power of a membrane system. For example, a P-semi-
uniform family of standard AM0

−d systems can solve P complete problems, this is
clear when we express it in terms of reductions: AGAP ≤P STDREC.
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Chapter 4

Uniformity is strictly weaker

than semi-uniformity

For many naturally inspired models of computation it often easier to design hard
coded devices than a general problem solver. Such models map a specific instance of
the problem to a computing device, we call this mapping semi-uniformity. In contrast,
the well-established framework of circuit uniformity maps each input length n ∈ N to
a circuit cn ∈ C. This raises the question of whether the notions of uniformity and
semi-uniformity are equivalent.

It has been shown in a number of models that whether one chooses to use uniformity
or semi-uniformity does not affect the power of the model. However, in this chapter
we show that these notions are not equivalent. We prove that choosing one notion over
another gives characterisations of completely different complexity classes, including
known distinct classes.

Why is this result surprising? Every class of problems solved by a uniform family
of devices is contained in the analogous semi-uniform class, since one is a restriction
of the other. However, in all membrane system models studied to date, the classes of
problems solved by semi-uniform and uniform families turned out to be equal [7, 44, 66].
Specifically, if we want to solve some problem, by specifying a family of membrane
systems (or some other model), it is often much easier to first use the more general
notion of semi-uniformity, and then subsequently try to find a uniform solution. In
almost all cases where a semi-uniform family was given for some problem [5, 45, 55, 66],
at a later point a uniform version of the same result was published [4, 7, 55]. Here we
prove that this improvement is not always possible.

In this chapter we show that uniformity is not equal to semi-uniformity, resolving
Open Problem C in [56]. We show that the class of problems decidable by AC0-
uniform families of active membrane systems without charges or dissolution rules is
a strict subset of the problems solvable by AC0-semi-uniform families of systems of
the same type. Besides their respective use of uniformity and semi-uniformity, both
models are identical. Specifically, we show in Section 4.1 that AC0-uniform AM0

−d

systems characterise AC0. Combined with Theorem 3.11, which showed that AC0-semi-
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uniform AM0
−d systems characterise NL, and the fact that AC0 ( NL [24], this gives

the following result:

Theorem: 4.1. AC0 = (AC0,AC0)–PMCAM0−d ( (AC0)–PMC∗AM0−d
= NL

This result is illustrated by the leftmost pair of triangles In Figure 4.1. In rest of this
chapter, we prove the left hand side equality of Theorem 4.1, that is, that (AC0,AC0)-
uniform recogniser AM0

−d systems characterise AC0. In fact we can also state a more
general result for a number of complexity classes below NL, for brevity we keep the
list short.

Theorem: 4.2. Let C ∈ {AC0,NC1, L} and assuming NC1 ( L ( NL then C =
(C,C)–PMCAM0−d ( (C)–PMC∗AM0−d

= NL

This shows that such uniform membrane systems are essentially powerless compared
to their uniformity conditions, and as far down as AC0, they are as weak and as strong
as their uniformity condition. In Figure 4.1, Theorem 4.2 is illustrated by the triangles
to the left of (and including) the uniformity condition L.

The proof works by showing that in a uniform family of such membrane systems,
even though predicting an arbitrary membrane system may be NL-complete, in fact
there is an equivalent, but simpler, membrane system that can evaluated in AC0. This,
along with some other tools, is used to show that if the power of the uniformity notion
is AC0 or more, then the power of the entire family of systems is determined by the
power of the encoding function.

This result proves something general about families of finite devices that is inde-
pendent of particular formalisms and can be applied to other computational models
besides membrane systems. To demonstrate this, in Section 4.2 we relate the no-
tion of semi-uniformity to circuit complexity and obtain an analogous result with
a shorter proof. Besides membrane systems and circuits, some other models that
use notions of uniformity and semi-uniformity include families of neural networks,
molecular and DNA computers, tile assembly systems, branching programs and cellular
automata [9, 16, 49, 64, 65]. Our results could conceivably be applied to these models.

4.1 Uniform families without dissolution

The following theorem is key to the proof of Theorems 4.1 and 4.2. Roughly speaking,
Theorem 4.3 states that in uniform membrane systems of the type we consider,
the uniformity condition dominates the computational power of the system. By
letting E = F = AC0 , the statement of Theorem 4.3 gives us the left hand side
equality in Theorem 4.1. By letting E = F ∈ {AC0,NC1, L} we get the left hand
side of Theorem 4.2. The remaining classes quoted in the theorem serve to illustrate
Figure 4.1.

Theorem: 4.3. Let E,F ∈
{
AC0,NC1, L,NL,NC2,P,NP,PSPACE

}
and let F ⊆ E.

Then (E,F)–PMCAM0−d = E.
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Figure 4.1: Complexity classes that are characterised by the membrane systems studied
in this chapter. Characterisations by uniform systems are denoted by , and semi-
uniform by . For example, Theorem 4.1 is illustrated by the fact that AC0-uniform
systems characterise AC0, and that AC0-semi-uniform systems characterise NL.

The proof works by showing that for each uniform membrane family Π (of polyno-
mial sized recogniser AM0

−d systems), that decides problem X, there exists another
family Π′ that decides X but where every system in Π′ is so greatly simplified that Π′

and can be evaluated by a uniform family of AC0 circuits.
First we recall from Lemma 3.3 that the objects in a AM0

−d system can be divided
into two sets Oyes and Ono such that Oyes∩Ono = ∅. The objects in Oyes all eventually
evolve (or are) the object yes, and all those in Ono eventually evolve (or are) the
object no.

Lemma: 4.4. For Πn in a uniform family of recogniser AM0
−d systems, a size-two

input alphabet I = {a, b} ( Oyes ∪ Ono is both necessary (in the worst case) and
sufficient, in the sense that this restriction does not alter the computing power of the
system Πn.

Proof. It can be seen that it is necessary that the input alphabet I contains at least 1
object from Oyes and 1 from Ono as follows. In a uniform family of recogniser (see
Definition 2.9) membrane systems each membrane system f(1n) = Πn must in the
worst case decide all inputs e(x) where x ∈ Σn (see Definition 2.11). Thus each Πn

has the potential to evolve either of the yes and no objects∗. In Lemma 3.3 we saw
that Oyes ∩ Ono = ∅. Thus the input set I of each member of a uniform family, if a
Πn needs to accept and reject, must have at least one object in Oyes ∩ I and at least
one object in Ono ∩ I.

It can be seen that it is sufficient for set I to contain a single object from each
set Oyes, Ono as follows. Given a membrane system Πn, a member of a uniform family
∗Of course one can think of degenerate cases such as a family that accepts all and only words of

length 5.
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recognising X by functions (e, f) with |I| > 2, we describe another system Π′n in
a uniform family by functions (e′, f ′) that also recognises X. The system Π′n is
identical to Πn except that: the set of objects is O′ = O ∪ {a, b}, the set of input
objects (and the range of e′) is I ′ = {a, b}, and there are two extra type (a) evolution
rules, [ a → I ∩ Oyes ], [ b → I ∩ Ono ]. In the first step of its computation Π′n uses
exactly one of the input objects (a or b created by e′(x)) to generate e(x) (as well
as some “extra” objects, (I ∩ Oyes)\e(x)). That is Π′n evolves those objects from I

that e(x) produces for Πn as and some extra, these extra objects cannot change the
outcome of the computation because they all are elements of Oyes or all elements
of Ono. Thus uniform families of recogniser AM0

−d systems need at most an input
alphabet I = {a, b} with one of a, b from set Oyes and the other from set Ono.

Lemma 4.4 permits us to consider only those systems that have two input ob-
jects I = {a, b}. Thus we restrict attention to the case where the input encoding
function is of the form e : X → {a, b} . We say that e is a characteristic function with
range {a, b}.

Lemma: 4.5. Let Π be a uniform family (by functions e and f) of confluent recog-
niser AM0

−d systems (with I = {a, b} via Lemma 4.4) which recognises instances of X.
There exists a family Πm that also recognises instances of X but uses a uniformity
function fm whose range is a set with only two membrane systems, both of which can
be evaluated in AC0.

Proof. Consider the membrane system f(n) = Πn ∈ Π. The essential property of this
system is that one object in its input set I = {a, b} eventually evolves to yes while
the other eventually evolves to no in the output membrane (the accepting/rejecting
state of the membrane system). That is a ∈ Oyes ⇒ b ∈ Ono and a ∈ Ono ⇒ b ∈ Oyes.

However, this essential property is captured by two extremely simple membrane
systems with only 4 objects and a single membrane labelled 0. Both systems use the
following membrane system whose input membrane i = 0:

({a, b, yes, no} , {(0, ∅)}, {(0, ∅)}, {0}, {(0, 0)}, R).

Let ΠP be the system with the rules R = {[ a → yes ]0, [ b → no ]0} .

Let ΠN be the system with the rules R = {[ a → no ]0, [ b → yes ]0} .

Therefore if there is a family Π, uniform by the pair (e, f), that solves X, where f
outputs valid but arbitrary membrane systems then there is another family Πm uniform
by (e, fm) that also solves X and the range of fm is {ΠP,ΠN}. Both possible members
of Πm can be trivially evaluated in AC0.

Let (E,F)–PMCAM0−d be the set of problems solved by uniform families of recog-
niser AM0

−d systems whose functions e, f are respectively computable in E, F. Next
we prove Theorem 4.3, which we restate:

Theorem: (4.3). Let E,F ∈
{
AC0,NC1, L,NL,NC2,P,NP,PSPACE

}
and

let F ⊆ E. Then (E,F)–PMCAM0−d = E.
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Proof. First, we prove the upper-bound (E,F)–PMCAM0−d ⊆ E (F ⊆ E, and the
classes E, F are as given in the statement). As we have seen in Lemma 4.5, each
problem in the class (E,F)–PMCAM0−d is solved by a family composed only of membrane
systems ΠP and ΠN. To simulate this family on input x we first compute fm(1|x|) and
then evaluate the resulting membrane system (either ΠP or ΠN) with input e(x). The
weakest E that we consider is E = AC0 and we only consider the case where F ⊆ E, thus
the functions e, f are both in FAC0. Similarly, when E is any of the classes mentioned
in the statement then e and f are in the function equivalent of that class. As observed
in Lemma 4.5, the membrane systems ΠP and ΠN can be simulated in AC0.

The lower-bound E ⊆ (E,F)–PMCAM0−d is easy to show. We use the fact, shown
above, that e is a characteristic function with access to the input word. Thus the
following simple family computes any problem from E: function e(x) = {a} if x ∈ X
and e(x) = {b} if x /∈ X, and fm is the constant function fm = ΠP.

4.2 Uniform and semi-uniform circuit complexity

The notion of uniformity was first introduced, by Borodin [12], for Boolean circuits. We
briefly compare and contrast the complexity of uniform and semi-uniform families of
Boolean circuits. First, we consider circuits with AND, OR, and NOT gates. Uniform
families of these circuits are well-known to characterise P, we show that the same is
true for semi-uniform families. If we forbid the circuits to use AND and NOT gates;
the resulting semi-uniform families characterise NL. However, the uniform families of
such circuits are much weaker and solve at most problems in AC0. So in this context
we see a large difference between the power of uniformity and semi-uniformity.

Any circuit (with AND, OR and NOT gates) of polynomial size and depth can be
evaluated in polynomial time, this is the canonical P-complete problem known as CVP.

Problem: 4.6 (Circuit Value Problem (CVP) [39]).
Instance: A Boolean circuit α, inputs x1, . . . , xn, and a designated gate y.
Question: Is the value of gate y in α true on input x1, . . . , xn?

We now give a more detailed definition of uniform circuit family than the summary
presented in Section 1.2.3.

Definition: 4.7 (Uniform families of circuits [27]). A uniform circuit family {αn} is
an infinite collection of circuits with a single output gate such that there is a function f
(computable within some resource bound) such that f(1n) = αn. We say a uniform
family of circuits {αn} decides a language X if for each x ∈ {0, 1}n, circuit αn
evaluates to 1 if x ∈ X and 0 if x /∈ X.

We now introduce a definition of semi-uniform families of Boolean circuits that is
inspired by Definition 2.12.

Definition: 4.8 (Semi-uniform families of circuits). A semi-uniform circuit fam-
ily {αx} is an infinite collection of Boolean circuits with a single output gate such that
there is a function h (computable within some resource bound) such that h(x) = αx
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and x ∈ {1, 0}∗. We say a semi-uniform family of circuits {αx} decides a language X
if for each x, circuit αx evaluates to 1 if x ∈ X and 0 if x /∈ X.

The complexity of uniform circuits has been well explored, we recall a well-
known [27, 33] fact.

Theorem: 4.9. AC0-uniform circuits (with AND, OR and NOT gates) solve exactly
the problems in P.

Using a known reduction we show the power of semi-uniform families.

Theorem: 4.10. AC0-semi-uniform circuits (with AND, OR and NOT gates) solve
exactly the problems in P.

Proof. There exists an FAC0 reduction, r from the P-complete problem AGAP to CVP

such that r(x) ∈ CVP iff x ∈ AGAP [27, 33]. To show P-hardness, we use this reduction
to define a semi-uniform family of circuits which recognise instances of AGAP by simply
letting the function h = r in Definition 4.8. As observed, the problem of evaluating a
circuit (with AND, OR, and NOT gates) is in polynomial time.

We have seen that both uniform and semi-uniform Boolean circuits with AND,
OR and NOT gates characterise P. To show a difference in their computational power
(analogous to what we have seen for membrane systems in Section 4.1) we restrict
the Boolean circuits by prohibiting AND and NOT gates, we refer to these as “OR
circuits”. The problem of evaluating OR circuits is defined as follows:

Problem: 4.11 (OR Circuit Value Problem (ORCVP)).
Instance: A Boolean circuit α (using only disjunctive logic, i.e. no AND nor NOT
gates), inputs x1, . . . , xn, and a designated gate y.
Question: Is the value of gate y in α true on input x1, . . . , xn?

We quickly observe that ORCVP ∈ NL: a path from the gate y to an input gate,
that has been assigned 1, is non-deterministically chosen, if the path is valid then
accept, else reject. We show NL-hardness for ORCVP by a reduction from STCON

(Problem 3.6).

Lemma: 4.12. STCON ≤AC0 ORCVP

Proof. Given an instance of G = (V,E, s, t) and instance of STCON, we construct a
circuit α. For each vertex v ∈ V in the graph there is an OR gate v in the circuit α.
Each directed edge (vi, vj) in the graph becomes a wire (vi, vj) in the circuit α. Add
a constant gate x1 with value 1 and a wire (x1, s) linking the 1 to the “s” gate in the
circuit. Then add an output gate y and a wire (t, y) linking the “t” gate to the output
gate of the circuit. We add a constant gate x0 with value 0, for each (non-input)
gate v in α with no incoming wires, add a wire connecting x0 them to v.

If there is a path from s to t in the graph then the single constant gate x1 with
value 1 causes each successive OR gate to have value 1, including the gate y. If there
is no path from s to t, then the 1 input never propagates to the gate y and the circuit
answers 0. Thus the value of the gate y is true iff there is a directed path from s to t
in the graph. This reduction is straightforward and is easily computable in FAC0.
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Now we are ready to discuss the power of uniform and semi-uniform families of
OR circuits.

Theorem: 4.13. AC0-semi-uniform families of OR circuits characterise NL.

Proof. The reduction provided in Lemma 4.12 is a function r such that r(x) ∈ ORCVP

iff x ∈ STCON. We use this reduction to define a semi-uniform family of circuits which
recognise instances of STCON by simply letting the function h = r in Definition 4.8.
Each circuit in the family outputs 1 iff x ∈ STCON and outputs 0 iff x /∈ STCON.
Thus AC0-semi-uniform families of OR circuits can solve NL-complete problems.

Each member of the semi-uniform family is an instance of ORCVP and thus can
be evaluated in non-deterministic logspace.

If the function h is more difficult to compute than the resulting circuit is to evaluate
then the function h defines the complexity of the family. For example, if we consider
a h that is computed in PSPACE then we can reduce a PSPACE-complete problem
such as QSAT to ORCVP giving an “artificially” huge amount of power to the family.

Now we compare this with a characterisation for uniform families of OR circuits.

Theorem: 4.14. AC0-uniform families of OR gate circuits are upper-bounded by AC0.

Proof. Each member of a uniform family of circuits to decide a language has a
single output gate y. To simulate such a circuit we must compute the uniformity
function f(1|x|) and then evaluate resulting circuit on input x. However a single OR
gate, with inputs from x1, . . . , x` computes the same function as an arbitrary OR
circuit where y is reachable from each of the inputs x1, . . . , x` (and no other input or
constant gates). Thus given a family of arbitrary OR circuits there exists a family
where each circuit has a single OR gate that recognises the same class of languages.
A circuit family of single OR gate circuits is trivially computable in AC0, so if the
uniformity function f (see Definition 4.7) is computable in FAC0 then the problem
decided by the family is in AC0.

If a uniform family of circuits requires more computing resources to construct a
circuit than are needed to evaluate that circuit it is unknown how this affects the
set of problems solved by the family. For example, we do not know if the problems
solved by P-uniform constant depth circuits with unbounded fan-in can solve more
than FO-uniform AC0 (see [8]).

Combining Theorem 4.13 and Theorem 4.14 we have:

Corollary: 4.15. The set of problem solved by AC0-uniform families of OR only
circuits ⊆ AC0 ( NL = the set of problems solved by AC0-semi-uniform families of OR
only circuits.

4.3 Discussion

We have shown that uniformity and semi-uniformity are actually distinct notions that
can lead to large differences in computing power. This bucks a trend where, for many
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models, both notions were found to coincide in the sense that they characterise the
same complexity classes.

The strict difference in the power of uniform and semi-uniform families of OR
circuits in Corollary 4.15 echoes our main result for membrane systems given in
Theorem 4.1. However, we also note that for active membranes with dissolution
(AM0

+d, see Chapter 5) and for standard Boolean circuits, AC0 uniform, and semi-
uniform, families characterise the same class, namely P. These facts are summarised
in Table 4.3.

AC0-uniform AC0-semi-uniform
Circuits P P

AM0
+d P P

OR circuits ⊆ AC0 NL

AM0
−d AC0 NL

Table 4.1: The computational power of 4 models with AC0 uniform and semi-uniform
families.

The results in this chapter concern the general concepts of uniformity and semi-
uniformity and so can also be applied to other computational models besides membrane
systems and circuits. Some other models that use notions of uniformity and semi-
uniformity include families of: neural networks, molecular and DNA computers, tile
assembly systems, cellular automata, and branching programs [9, 16, 49, 64, 65].

52



Chapter 5

Dissolution rules and

characterising P

Previous complexity results for membrane systems had a free P lower-bound because
they used P-(semi-)uniform families [28, 30]. However a P lower-bound provided by the
family constructor does not tell us much about the computing power of the model itself.
For example: in Chapter 3 we lowered the power of some models from P down to NL

by restricting the semi-uniform families to be constructable in FAC0 rather than FP;
and more surprisingly, the same restriction to uniform families in Chapter 4 lowered
the power of some models from P down to AC0! In Section 5.1 of this chapter we give
an AC0-uniform family of AM0 systems which solves a P-complete problem. This
is the first P lower-bound for active membrane systems where the problem is solved
by the members of the family and not by the uniformity or input encoding function.
This P lower-bound is also interesting as it uses only evolution and dissolution rules.

In Section 5.2 we attack the open problem known as the “P-conjecture”.

Conjecture: 5.1 (P-conjecture [56]). The class of all decision problems solvable in
polynomial time by active membranes without charges using evolution, communication,
dissolution and division rules for elementary membranes is equal to the class P.

We prove that the conjecture holds when we restrict the systems to use type (es)
rules instead of type (e). Specifically this restriction insists that the two membranes
that result from a weak elementary division rule must be identical. This more closely
models mitosis, the biological process of cell division, and we refer to it using the
biological term “symmetric division” [2]. When the two resulting daughter cells are
different, as is the case for type (e) rules (weak elementary division), we use the
biological term “asymmetric division”. Stem cells use asymmetric division in nature
as a way to achieve cell differentiation. So, as well as providing a partial result for the
P-conjecture, this variation is biologically motivated.

The lower-bound and upper-bound in this chapter combine to give a characterisation
of P for uniform and semi-uniform families of AM0

+d,−a systems (dissolution and
symmetric non-elementary division rules). The results are visualised in Figure 5.1.
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Figure 5.1: Characterisations by semi-uniform families of recogniser AM0
+d,−a systems

are denoted by , uniform families of recogniser AM0
+d,−a systems are denoted by .

In this case they are equal in power and the symbol appears as .

5.1 P lower-bound for uniform families with dissolv-

ing rules

In this section we prove that the set of problems solved by AC0-uniform families of
polynomial time active membrane systems with dissolution rules contains P.

Theorem: 5.2. P ⊆ (AC0,AC0)–PMCAM0
+d

This is shown by solving AGAP [27], the P-complete analogue of STCON (also
known as GAP). We actually consider a slight restriction of AGAP where the vertices
are ordered topologically. This problem is NC1 complete for P via a reduction from
the topologically sorted monotone circuit value problem [27].

Problem: 5.3 (Topologically Sorted Alternating GAP (TAGAP)).
Instance: A directed acyclic graph G = (V,E,A, s, t) where s, t ∈ V , and V is the
ordered list of vertices such that if (p, c) ∈ E then p is before c in V . Let A ⊆ V be
the set of universal vertices.
Question: Is apath(s, t) true? The function apath(x, y) holds iff
• x = y or
• x is existential (that is x ∈ V \A) and there exists z ∈ V with (x, z) ∈ E

and apath(z, y) holds, or
• x is universal (that is x ∈ A) and for all z ∈ V with (x, z) ∈ E, apath(z, y)

holds.

We define a uniform family of membrane systems Πn ∈ Π to decide if x ∈ TAGAP.
The system Πn decides all instances of x where the graph encoded in x has n vertices,
the number of vertices |V | is trivially obtainable from 1|x|. Without loss of generality
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we assume that the vertices of the graph are numbered from 1 to n, and that s = 1
and t = n. The algorithm used by each membrane in the family operates in two
distinct phases. The first phase records paths through the graph, the second phase
uses these paths to evaluate apath(s, t). The output of e(x) is a set of objects and is
placed in the input membrane “i” of the membrane system, e(x) ⊆M(i). In this family
the instance x ∈ TAGAP ∪ coTAGAP to be input to Πn is encoded by the function e

as follows:

e(x) = {s, δ, d4}
∪ {��u-v | (u, v) /∈ E}
∪ {v∀ | v ∈ A}
∪ {v∃ | v ∈ V \A}.

Lemma: 5.4. For this uniform family deciding TAGAP, the function e(x) is com-
putable in FAC0.

Proof. We detail how a CRAM generates the objects ��u-v representing all edges not
in E.The problem instance x is assumed to encode the edges of the graph in a binary
adjacency matrix M of size |V |2. If the element at Mu,v is 1 there is an edge (u, v) ∈ E,
if 0 there is no edge. The CRAM uses a gird of |V |2 processors to write out the list of
non-edges in 2 steps. Each processor reads a single designated element of Mu,v. If
the element Mu,v is 1 then the CRAM writes out a blank “ ” to its output register;
if Mu,v is 0 then the processor writes out “��u-v” to its output register. The other
objects generated by e(x) are straightforward to produce in constant time.

When the function f : {1}∗ → Π is given |x| in unary it constructs (in constant
parallel time) a membrane system Πn that recognises all instances TAGAP of length |x|∗.
The membrane system Πn = f(1|x|) is as follows:

• The membrane to label relation, L, is the identity relation (unique labels).

• The membrane structure, µ = (Vµ, Eµ,first∪Eµ,second), is a sequence of concentric
membranes. The sets Eµ,first and Eµ,second are defined separately in Sections 5.1.1
and 5.1.2.

• The set of rules R = Rfirst ∪ Rsecond, the sets Rfirst and Rsecond are defined in
Sections 5.1.1 and 5.1.2.

• The sets of objects, O, and labels, H, are all those mentioned in µ and R.

To ease the explanation of the computation of such a membrane system we break
the construction into two sections, in Section 5.1.1 we describe the first phase of the
algorithm and in Section 5.1.2 the second phase of the algorithm.

∗The encoding of TAGAP ensures that all instances of |x| have n vertices.

55



P lower-bound for uniform families with dissolving rules
Dissolution rules and characterising P

5.1.1 First phase: following all paths in the graph

The first phase of the membrane system follows (in parallel) all paths through the
graph starting from s. The membrane structure of the first phase of the membrane
algorithm is a sequence of concentric membranes representing all possible edges in a
graph with n vertices. Each membrane has a unique label and they are arranged such
that there is a “reset” membrane interleaved between the membranes representing
edges.

Eµ,first =
n−1⋃
x=1

{
{(〈x, y + 1〉, r〈x,y〉,〈x,y+1〉) | y ∈ {2, . . . , n− 2} ∧ x < y}

∪ {(r〈x,y〉,〈x,y+1〉, 〈x, y〉) | y ∈ {2, . . . , n− 2} ∧ x < y}
∪ {(r〈x,n〉,〈x+1,x+2〉, 〈x, n〉)}

∪ {(〈x+ 1, x+ 2〉, r〈x,n〉,〈x+1,x+2〉)}
}
∪ {(〈1, 2〉, i)}

A CRAM using n× n processors can write out the structure Eµ,first in constant
time. The number of each processor represents all different combinations of x and y.
If x < y and 2 ≤ y ≤ n − 2 then the processor writes out two edges to its output
registers representing (〈x, y + 1〉, r〈x,y〉,〈x,y+1〉) and (r〈x,y〉,〈x,y+1〉, 〈x, y〉). The other
edges are straightforward to generate.

i

〈1, 2〉

r〈1,2〉,〈1,3〉

〈1, 3〉

r〈1,3〉,〈1,4〉

〈1, 4〉

r〈1,4〉,〈2,3〉

〈2, 3〉

r〈2,3〉,〈2,4〉

〈2, 4〉

r〈2,4〉,〈3,4〉

〈3, 4〉

2nd phase

Figure 5.2: The section of the membrane structure used by the first phase of a
membrane system Π4 from our uniform family to recognise TAGAP instances. In this
case the number of vertices is n = 4. The direction of the arrows (→) indicates the
movement of the objects during the computation as they dissolve their way up the
membrane structure. If the arrow directions are reversed we see the parent-child
relationships of the vertices. The parent of the vertex 〈3, 4〉 is the first membrane of
the second phase of the computation.

We now define Rfirst, the set of membrane rules for the first phase of the algorithm.
Each set of rules from (5.1) to (5.7) is a subset of Rfirst and are specified over the
range of numbers from 1 to n so a CRAM can output Rfirst the whole set of rules in
constant time.

The first phase of the membrane system algorithm produces objects which represent
every (and only) edge(s) in E that are traversable from s, as well as the distance(s) of
each vertex from s on all paths through the graph. The vertices of each of these edge
objects is marked with their distance from s on some path. These edges are created
when an object u, marked with some length, is in a membrane labeled “〈u, v〉”, the
object u is preserved by an evolution rule and two new objects are created, one object
representing an edge from u to v, and another representing vertex v. The membrane
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is then dissolved and the objects move to a reset membrane where they are prepared
for another edge test. The input set includes an object for each possible edge not in E,
these objects are used to control the algorithm and prevent objects being generated
for edges not in the graph. They do this by dissolving the membranes representing an
edge not in the input graph before any objects are affected by its rules.

We start the computation in the input membrane “i”, the most deeply nested
membrane in the structure Eµ (see Figure 5.2). Of the original input multiset M(i) =
e(x) the first phase uses the objects {s, δ} ∪ {��u-v | (u, v) /∈ E}.

In the first step of the computation the membrane “i” is dissolved and the object s′L0

is created. This represents that the algorithm has started following a path that is
currently of length 0, and is currently at vertex s (the start vertex).

[ s ]i → s′L0 (5.1)

The objects are now in the first of a number of nested membranes which alternate
from “reset” membranes (r〈w,x〉,〈y,z〉) to membranes representing possible edges 〈w, x〉
in the graph. Now the computation of the first phase really begins, the steps below
repeat for each nested pair of membranes 〈w, x〉, r〈w,x〉,〈y,z〉 in the nested structure.
The following are all sets of rules defined where u ∈ {0, . . . , n − 1}, v ∈ {1, . . . , n},
and i ∈ {0, . . . , n− 1}.

First time-step: In the first time-step, any object representing a vertex in the graph of
type u (for any distance from s) looses its prime and becomes ready to evolve in the
following time-step.

[u′Li → uLi ]〈u,v〉 (5.2)

In the same time-step, in parallel, if there is an object of type ��u-v in a membrane with
label 〈u, v〉 it dissolves the membrane, this prevents the vertex objects (uLi) from
“following” this non-existent edge on a path through the graph.

[��u-v ]〈u,v〉 → λ (5.3)

Second time-step: If Rule (5.3) was applied then the edge (u, v) does not exist in
the input graph. The membrane representing the edge was dissolved and the objects
are now in the reset membrane. Here the primes removed in the first time-step are
reapplied to all objects representing vertices. All reset membranes have identical rules,
thus we have u, v, w, x ∈ {0, . . . , n}.

[uLi → u′Li ]r〈u,v〉,〈w,x〉 (5.4)

The object δ dissolves the reset membrane and the objects are enter a new edge
membrane and these steps repeat until all membranes of the first phase are dissolved.

[ δ ]r〈u,v〉,〈w,x〉 → δ (5.5)

Second time-step: If Rule (5.3) was not applied, then the edge (u, v) is in the input
graph. The primes have been removed from the objects representing vertices allowing
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them to be used in this time-step by an evolution rule to creates an object representing
and edge from u to v.

[uLi → uLi-vLi+1
′, uLi, vLi+1, d ]〈u,v〉 (5.6)

Rule (5.6) is only applicable in the case where the vertex v is reachable from u in
the graph (that is if Rule (5.3) was not applied). The object uLi-vLi+1 records that
the edge was followed on a path from s and the distances these vertices are on the
path, the object vLi+1 is kept for the case where there are several edges leaving the
vertex u. If the vertices are not numbered in topological order, Rule (5.6) may not
follow a path correctly through the graph.

Third time-step: Now that the edge object has been generated we use the d object to
dissolve the membrane and move the contents into the reset membrane.

[ d ]〈u,v〉 → λ (5.7)

Fourth time-step: The primes are returned to the vertex objects via Rule (5.4) while
the δ object dissolves the reset membrane via Rule (5.5). The objects enter a new
edge membrane and these steps repeat until all membranes of first phase are dissolved.

We began this phase with an object representing the start vertex s, this ensures all
paths generated are rooted at s. This s object is tagged with L0, thus, only objects
with the correct path lengths Li are generated. The vertices of the input problem are
ordered topologically, ensuring that the algorithm will not encounter an edge (u, v)
until the vertex u has been encountered.

These points guarantee that at the end of the first phase of the algorithm, in
the system there is (i) at least one object uLi-vLi+1

′ representing each edge (u, v)
in the input graph reachable from s, and (ii) each edge is marked with i and i + 1,
the two component vertices’ distances from s. Note that if there are multiple paths
involving the same vertices, objects representing the same edges with different lengths
are generated.

5.1.2 Second phase: checking for an alternating path

The second phase of the algorithm evaluates if there is an alternating path from the
start vertex s to the terminal vertex t in the input graph, that is, the function apath(s, t)
evaluates to true. In Problem 5.3, the function apath is defined recursively, so to
evaluate apath(u, t) it is necessary to evaluate apath(v, t) for all v where (u, v) ∈ E.
Accordingly, the second phase of the algorithm evaluates the vertices at the non s end
of each path first, then works backwards along the paths until they finally converge at
the start vertex s. The algorithm considers each vertex at each distance ≤ n− 1 (i.e.
up to the maximum possible path length). By evaluating apath(u, t) for a vertex u
at distance i from vertex s on some path, it provides a piece of information used to
evaluate a vertex on the same path at distance i− 1. By evaluating every vertex at
distance i, the algorithm ensures that it has all necessary information to evaluate all
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vertices at distance i − 1. When the algorithm reaches i = 0 it evaluates the start
vertex s and outputs the answer to this instance of the problem.

The membrane structure used by the second phase of the algorithm is another
sequence of concentric membranes (see Figure 5.3) defined as follows:

Estart = {(nLn−2, nLn−1), (nLn−1, 〈n− 1, n〉)}
Eapath1 = {(u∃Li, u∀Li) | 1 < u < n, 0 < i < n− 1}
Eapath2 = {(euLi, u∃Li) | 1 < u < n, 0 < i < n− 1}
Evlink = {(u− 1∀Li, euLi) | 2 < u < n, 0 < i < n− 1}
Enlink = {(n− 1∀Li, nLi) | 0 < i < n− 1}
Eelink = {(nLi−1, e2Li) | 1 < i < n− 1}
Ehead = {(1∀L0, e2L1), (1∃L0, 1∀L0), (0, 1∃L0)}

Eµ,second = Estart ∪ Eapath1 ∪ Eapath2 ∪ Enlink ∪ Eelink ∪ Ehead

This structure is easily constructed by a constant time CRAM: using |V |2 processors
the CRAM prepares all n× n values of u and i and then writes out the edges Eµ,first,
representing the membrane structure of the second phase, as specified above. The
membrane 〈n− 1, n〉 is from the first phase of the algorithm and is contained in the
most deeply nested membrane of the second phase, nLn−1.

〈3, 4〉
(First phase)

4L3

4L2

3∀L2 3∃L2 e3L2

2∀L2 2∃L2 e2L2

4L1

3∀L1 3∃L1 e3L1

2∀L1 2∃L1 e2L1

1∀L0 1∃L0 0

Figure 5.3: The membrane structure of the second phase of our uniform family to
solve TAGAP, in this case the number of vertices n = |V | = 4. The direction of the
arrows (→) indicates the movement of the objects through the structure by dissolving
membranes. To see the parent child relationship, reverse the direction of the arrows.
The child of first vertex is the most outer membrane used by the first phase of the
computation, in this case 〈3, 4〉.

The second phase of the algorithm evaluates apath(s, t) using the information
generated in the first phase. It commences in a membrane labeled “nLn−1” (recall that
the vertex t is assumed to be numbered n and the longest path in an acyclic graph
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is n− 1), which is the most deeply nested membrane at this point in a computation
since all membranes from the first phase have been dissolved (see Figure 5.3). The
objects in membrane nLn−1 are: the objects produced by the first phase, {uLi-vLi+1

′ |
(u, v) ∈ E, i ∈ {1, . . . , n−1}} where the index i represents the distance that each vertex
is from s on a path through the graph; and some objects from the input encoder e(x)
that are unused from the first phase {v∀ | v ∈ A} ∪ {v∃ | v ∈ V \A}. There is also a
counter object d4 which is used to dissolve membranes at the appropriate time.

First we explain the rule applied when an object representing an edge that reaches t
is encountered (that is (u, t)). In this uniform solution, the vertex t is the vertex
labeled n in the graph.[

uLi−1-nLi′ → YuLi−1

]
nLi

where u, i ∈ {1, . . . , n− 1} (5.8)

This is the where the first “yes” (YvLi−1) objects appear. These objects are used
by Rules (5.15) to (5.44) to generate further “yes” or “no” (NuLi−1) objects which
represent the positive or negative evaluation of apath(u, t) where v ∈ V and (u, v) ∈ E.

The rules to evaluate a universal vertex v use the fact that apath(v, t) does not
hold if there exists (v, w) ∈ E such that apath(w, t) does not hold. The rules to
evaluate an existential vertex v are based on the same principle except that apath(v, t)
holds if there exists (v, w) ∈ E such that apath(w, t) holds.

The evaluation of apath(v, t) assumes that all vertices that are on paths from v to t
(excluding v) have been evaluated by the rules of the second phase of the algorithm.
These rules use three membranes to evaluate each object representing an edge marked
with vertex distances from s, the steps of this process are visible in Figure 5.4.

In the following sub-sections we define the set of membrane rules Rsecond for the
second phase of the algorithm. Each of the Rules (5.13) to (5.44) are subsets of Rsecond.
Let q ∈ {∀,∃}.

The Rules (5.9) to (5.13) are common for evaluating both universal and existential
vertices and are defined where u ∈ {1, . . . , n−2}, v ∈ {1, . . . , n} and i ∈ {0, . . . , n−1}.

First time-step: Figure 5.4, parts (e), (f), (g), and (h). The objects representing edges
and apath evaluations that are related to vertex v at distance i have their primes
removed, ready to be used in the next time-step.

[uLi−1-vLi′ → uLi−1-vLi ]vqLi (5.9)

[ NvLi′ → NvLi ]vqLi (5.10)

[ YvLi′ → YvLi ]vqLi (5.11)

The counter object is decremented:

[ d4 → d3 ]v∀Li (5.12)

If the vertex v is existential, then the universal membrane is dissolved:

[ v∃ ]vqLi → v∃ (5.13)

In Section 5.1.2.1 we explain the rules for evaluating universal vertices, that is where
Rule (5.13) is not applied. If Rule (5.13) is applied, then v is existential and the rules
for this case are detailed in Section 5.1.2.2.
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Universal, Yes Universal, No Existential, Yes Existential, No

evLi
v∃Li
v∀Li

v∀, uLi−1-vLi
′,

YvLi
′, YvLi

′, d4
(a) Time-step 0

evLi
v∃Li
v∀Li

v∀, uLi−1-vLi
′,

NvLi
′, YvLi

′, d4
(b) Time-step 0

evLi
v∃Li
v∀Li

v∃, uLi−1-vLi
′,

NvLi
′, YvLi

′, d4
(c) Time-step 0

evLi
v∃Li
v∀Li

v∃, uLi−1-vLi
′,

NvLi
′, NvLi

′, d4
(d) Time-step 0

evLi
v∃Li
v∀Li

uLi−1-vLi, d3,

YvLi, YvLi,v∀
(e) Time-step 1

evLi
v∃Li
v∀Li

uLi−1-vLi, d3,

NvLi, YvLi,v∀
(f) Time-step 1

evLi
v∃Li

X v∀Li

uLi−1-vLi, d3,

NvLi, YvLi, v∃
(g) Time-step 1

evLi
v∃Li

X v∀Li

uLi−1-vLi, d3,

NvLi, NvLi, v∃
(h) Time-step 1

evLi
v∃Li
v∀Li

uLi−1-vLi
preN∀,

YvLW∀
i , YvLW∀

i ,

v∀, d2
(i) Time-step 2

evLi
v∃Li

X v∀Li

uLi−1-vLi
preN∀,

NvLi, YvLW∀
i ,v∀,

d2
(j) Time-step 2

evLi

X v∃Li
v∀Li

uLi−1-vLi
preY∃,

NvLW∃
i , YvLi,

v∃, d2
(k) Time-step 2

evLi
v∃Li
v∀Li

uLi−1-vLi
preY∃,

NvLW∃
i , NvLW∃

i ,

v∃, d2
(l) Time-step 2

evLi
v∃Li

X v∀Li

uLi−1-vLi
preY∀,

YvLW∀
i , YvLW∀

i ,

v∀, d1
(m) Time-step 3

evLi

X v∃Li
v∀Li

uLi−1-vLi
preN∀,

YvLW∀
i ,v∀, d1

(n) Time-step 3

X evLi
v∃Li
v∀Li

YuLi−1YuLi−1YuLi−1, NvLW∃
i ,

v∃, d4
(o) Time-step 3

evLi

X v∃Li
v∀Li

uLi−1-vLi
preN∃,

NvLW∃
i , d1,

NvLW∃
i ,v∃

(p) Time-step 3

evLi

X v∃Li
v∀Li

uLi−1-vLi
preY∀,

YvLW∀
i , d0,

YvLW∀
i , v∀

(q) Time-step 4

X evLi
v∃Li
v∀Li

NuLi−1NuLi−1NuLi−1, YvLW∀
i ,

v∀,d4
(r) Time-step 4

X evLi
v∃Li
v∀Li

NuLi−1NuLi−1NuLi−1, NvLW∃
i ,

v∃, d4
(s) Time-step 4

X evLi

YuLi−1YuLi−1YuLi−1, YvLW∀
i ,

d4, YvLW∀
i , v∀

(t) Time-step 5

Figure 5.4: The steps needed by the second phase of the algorithm to evaluate the
function apath(v, t) on a vertex v in a graph. The initial objects decide the final
outcome, the branches of the grey arrow indicate where the different computation
paths diverge.
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5.1.2.1 Rules for universal vertices

In this section the rules are defined over u ∈ {1, . . . , n − 2}, v ∈ {2, . . . , n − 1}
and i ∈ {0, . . . , n− 1}, unless stated otherwise.

Second time-step: Figures 5.4(i), 5.4(j). The objects remain in membrane v∀Li since
Rule (5.13) was applied. In a universal vertex v, apath(v, t) returns false if there is a
single negative apath(w, t) evaluation for any child vertex, w, of v. Accordingly, the
algorithm awaits a NvLi object to dissolve the membrane:

[ NvLi ]v∀Li → λ, (5.14)

and prepares the edge object to be become a NuLi−1 object.[
uLi−1-vLi → uLi−1-vLipreN∀

]
v∀Li

(5.15)

Any YvLi objects must wait for the next time-step, they are tagged with “W∀”.[
YvLi → YvLiW∀

]
v∀Li

where v ∈ {1, . . . , n− 1} (5.16)

The “∀” tag on the objects generated by Rules (5.15) and (5.16) prevents these objects
reacting while they pass through the parent u∃Li membrane while on their way to the
evaluating membrane, euLi. The counter object is decremented:

[ d3 → d2 ]vqLi where v ∈ {1, . . . , n− 1} (5.17)

We continue with the case where a no object (NvLi) which dissolved the mem-
brane v∀Li via Rule (5.14). This implies that the universal vertex v does not have
an alternating path to t (that is apath(v, t) does not hold). The description of the
computation where Rule (5.14) was not applied recommences at Rule (5.22) and
Figure 5.4(m).

Third time-step: Figure 5.4(n). In the previous step the membrane v∀Li was dissolved
by NvLi via Rule (5.14) and the objects are now in the existential membrane v∃Li.
However, vertex v is universal so the membrane v∃Li is immediately dissolved by
the v∀ object.

[ v∀ ]vLi∃ → v∀ (5.18)

The objects previously tagged with ∀ by Rules (5.15) and (5.16) are not affected by
Rules (5.27) to (5.34) as they pass through the existential membrane. The counter
decrements:

[ d2 → d1 ]vqLi where v ∈ {1, . . . , n} (5.19)

Fourth time-step: Figure 5.4(r). The objects are in evaluating membrane evLi
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where the prepared uLi−1-vLipreN∀ object evolves to be object NuLi−1. This implies
that apath(v, t) is false. [

uLi−1-vLipreN∀ → NuLi′
]
evLi

(5.20)

At the same time, the counter dissolves the evaluating membrane and resets. It will
be used again, along with the other objects, in the next series of membranes.

[ d1 ]evLi
→ d4 (5.21)

Now we go back a step to explain what happens if there was no NvLi object and
Rule (5.14) was not applied.

Back track, third time-step: Figure 5.4(m). Here we consider the case that Rule (5.14)
was not applied because there was no NvLi object to dissolve the universal mem-
brane v∀Li. This implies that either v has no children or that all of its children are on
a path to t. The algorithm prepares for the case that one of the child vertices does
have an alternating path to t by preparing the edge object to produce a yes object in
the following time-step.[

uLi−1-vLipreN∀ → uLi−1-vLipreY∀
]
v∀Li

(5.22)

The counter object is decremented via Rule (5.19). If there are any YvLW∀i objects
present, they can now dissolve the membrane,[

YvLW∀i
]
v∀Li
→ λ. (5.23)

Fourth time-step: Figure 5.4(q). If Rule (5.23) was applied there was a child of v
with an alternating path to t, the universal membrane has been dissolved and the
objects are now in the existential membrane v∃Li. However, vertex v is universal so
the membrane is immediately dissolved by the v∀ object via Rule (5.18). The objects
previously tagged with ∀ by Rules (5.15) and (5.16) are not affected by Rules (5.27)
to (5.34) as they pass through the existential membrane. The counter decrements:

[ d1 → d0 ]vqLi . (5.24)

Fifth time-step: Figure 5.4(t). In the evaluating membrane evLi, the prepared ob-
ject uLi−1-vLipreY∀ becomes a yes object for u (YuLi−1

′), this represents that apath(v, t)
evaluates to true. [

uLi−1-vLipreY∀ → YuLi−1
′
]
evLi

(5.25)

At the same time, the counter dissolves the evaluating membrane and resets. It will
be used again, along with the other objects, in the next series of membranes.

[ d0 ]evLi
→ d4 (5.26)
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5.1.2.2 Evaluating existential vertices

To evaluate existential vertices (those in V \A) the algorithm and rules work in a similar
manner to those described in Section 5.1.2. The main principle here is that apath(v, t)
is true if apath(w, t) is true for any w where w is a child vertex of v. The rules here
are defined over u ∈ {1, . . . , n− 2}, v ∈ {2, . . . , n− 1} and i ∈ {0, . . . , n− 1}, unless
stated otherwise.

First time-step, Figure 5.4(g) and 5.4(h). If Rule (5.13) is applied in the first time-step,
then vertex v is existential. The objects that will be used to evaluate this vertex
are de-primed via Rules (5.9), (5.10), and (5.11). The counter is decremented via
Rule (5.12).

Second time-step , Figure 5.4(k). Any NvLi objects are tagged with a W∃.[
NvLi → NvLiW∀

]
v∃Li

where v ∈ {1, . . . , n} (5.27)

Any uLi−1-vLi objects prepare to become yes objects.[
uLi−1-vLi → uLi−1-vLipreY∃

]
v∀Li

. (5.28)

If there are any YvLi objects then a child of v has a alternating path to t, dissolve
the membrane.

[ YvLi ]v∃Li → λ, (5.29)

The counter decrements via Rule (5.17).

Third time-step, Figure 5.4(o). The prepared edge object becomes a yes object
implying that apath(v, t) holds.[

uLi−1-vLipreY∃ → YuLi−1
′
]
evLi

(5.30)

At the same time, the counter dissolves the evaluating membrane and resets. It will
be used again, along with the other objects, in the next series of membranes.

[ d2 ]evLi
→ d4 (5.31)

Now we go back a time-step and explain the rules for the case where none of the
children of v had an alternating path to t.

Back track to the third time-step, Figure 5.4(p). If none of the children of v had
an alternating path to t then there was no YvLi object to dissolve the existential
membrane v∃Li. The algorithm now prepares the edge object to become a no ob-
ject Nui− 1. [

uLi−1-vLipreY∃ → uLi−1-vLipreN∃
]
v∃Li

(5.32)
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Any no objects that were waiting (NvLW∃i ) may now dissolve the membrane.[
NvLW∃i

]
v∃Li
→ λ (5.33)

The counter decrements via Rule (5.19).

Fourth time-step, Figure 5.4(s). In the evaluation membrane, the prepared ob-
ject uLi−1-vLipreN∃ becomes an NuLi−1

′ object, this implies that apath(v, t) evaluates
to false. [

uLi−1-vLipreN∃ → NuLi−1
′
]
evLi

(5.34)

The counter dissolves the evaluation membrane via Rule (5.26) and the objects are
released to the parent membrane for use in evaluating future vertices. The rules here
are defined over u ∈ {1, . . . , n− 2}, v ∈ {2, . . . , n− 1} and i ∈ {0, . . . , n− 1}, unless
stated otherwise.

5.1.2.3 Dead ends and unused vertices

If there is an edge (u, v) in the graph and vertex v has no child vertices (and v 6= t),
then apath(v, t) does not hold. There can be neither YvLi nor NvLi objects in
the membrane v∀Li so the algorithm uses the edge object uLi−1-vLi′ to produce
the NuLi−1 object.
Vertex v is a dead end. As usual, Rule (5.13) dissolves membrane vLi if v is an
existential membrane. If v is a universal vertex then the edge object evolves via
Rules (5.9), (5.15), (5.22):

uLi−1-vLi′ → uLi−1-vLi → uLi−1-vLipreN∀ → uLi−1-vLipreY∀

While if v is an exponential vertex, then the edge object evolves in membrane v∃Li
via Rules (5.9), (5.28), (5.32):

uLi−1-vLi′ → uLi−1-vLi → uLi−1-vLipreY∃ → uLi−1-vLipreN∃

During these three time-steps, the counter decrements d4 → d3 → d2 → d1 via
Rules (5.12), (5.17), and (5.19).

In the fourth time-step, the objects are still in the universal v∀Li, or existential v∃Li,
membrane due to the absence of YuLi or NuLi objects. The edge object either dissolves
the vqLi membrane and creates object NuLi−1

′:[
uLi−1-vLipreY∀

]
v∀Li

→ NuLi−1
′, (5.35)

or [
uLi−1-vLipreN∃

]
v∃Li

→ NuLi−1
′. (5.36)

The counter decrements to d0 via Rule (5.24).
In the fifth time-step, d0 dissolves the existential membrane (if it is not already

dissolved). Note that if the object v∀ is present, then Rule (5.18) could also be
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chosen to dissolve the membrane. This is the only instance of non-determinism in the
algorithm, however the results of both rules are identical.

[ d0 ]vqLi → d0 (5.37)

The evaluation membrane is dissolved via Rule (5.26) releasing the NuLi−1 object
(among all the others) into the next sequence of membranes.

Unused vertex If there is no edge (u, v) in the graph, or where v is not a distance i
from s on a path to t then the sequence of membranes are not needed at all. In
this case when the counter object reaches zero it dissolves all the three membranes
and moves the objects into the next sequence of the computation. As usual if
Rule (5.13) dissolves membrane vLi if v is an existential membrane. The counter object
decrements, d4 → d3 → d2 → d1 → d0, (via Rules (5.12), (5.17), (5.19), (5.24)). At
when the object reaches d0 it dissolves the universal then existential membrane (or just
the existential membrane) via Rules (5.37). Then Rule (5.26) dissolves the evaluating
membrane with d0 (which resets) and the objects move into the next sequence of
membranes.

5.1.2.4 Evaluating the start vertex

The algorithm begins by evaluating all vertices that are a distance of i = |V | − 1
from s on some path to t. Each vertex v at distance i is correctly evaluated and the
information (objects) needed to evaluate all vertices at distance i− 1 is produced.

We now describe the rules for the case when i = 1, i.e. to evaluate the start vertex s.
At this stage the rules evolve the output objects yes or no and the computation halts
(as opposed to the YuLi and NuLi objects we have already considered).

At this point in the algorithm all paths have been evaluated from their end vertices
back to vertex s and length i = 0. Recall that in an instance of TAGAP the s vertex
is numbered 1. If there is a single Y1L0 object, then the algorithm outputs a yes into
the environment. This implies that the input instance was an element of TAGAP.

First of all the Y10′ and N1L0
′ objects have their primes removed by the Rules (5.9),

(5.10), and (5.11). If the vertex s is existential the 1∀L0 membrane is dissolved via
Rule (5.13).

The start vertex s is existential. In the second time-step the objects are in the 1∃L0

membrane. Here the no objects wait for the next step via Rule (5.27). If there are
any yes objects, they dissolve the membrane and become a yes object. There are no
rules applicable in the environment so the system halts in an accepting configuration.

[ Y1L0 ]1∃L0
→ yes (5.38)

In the third time-step, if there were no Y10 objects in the membrane, then any
available no objects dissolve the membrane and become a no object. There are no
rules applicable in the environment so the system halts in a rejecting configuration.[

N1LW∃0

]
1∃L0

→ no (5.39)
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The start vertex s is universal. In the second time-step, if the vertex s is universal,
then Rule (5.13) does not dissolve membrane n∀L0. Here any yes objects are made
wait for the next step via Rule (5.16). If there are any no objects, we dissolve the
membrane and produce a no object.

[ N1L0 ]1∀L0
→ no (5.40)

In the next time-step the no object dissolves the parent 1∃L0 and is released to the
environment. There are no rules applicable in the environment so the system halts in
a rejecting configuration.

[ no ]1∃L0
→ no (5.41)

If there were not any no objects to trigger Rule (5.40) then any yes objects present
will dissolve the membrane and produce a yes object.[

Y1LW∀0

]
1∀L0

→ yes (5.42)

In the next time-step the yes object dissolves the parent 1∃L0 and is released to the
environment. There are no rules applicable in the environment so the system halts in
an accepting configuration.

[ yes ]1∃L0
→ yes (5.43)

If there were no paths leaving s in the graph, The counter decrements during the
above steps via Rules (5.12), (5.17), (5.19) from d4 → d3 → d2 → d1. In the fourth
time-step, if the object d1 is in membrane 1∀L0 or 1∃L0 then there must be no edges
leaving s so apath(s, t) does not hold.

[ d1 ]1qL0
→ no (5.44)

If the 1∃L0 membrane exists then no dissolves it via Rule (5.41) and the no is released
to the environment. There are no rules applicable in the environment so the system
halts in a rejecting configuration.

5.2 P upper-bound for systems with symmetric di-

vision

In this section we prove a P upper-bound on families of a type of active membrane
systems without charges, AM0

+d,−a. In a AM0
+d,−a system only the following types

of rules are permitted: evolution (a), communication-in (b), communication-out (c),
dissolution (d), and symmetric elementary division (es). Specifically we show that
any problem solvable by a semi-uniform family (constructable in polynomial time)
of AM0

+d,−a systems is also solvable on a polynomial time Turing machine.

Theorem: 5.5. (H)–PMC∗AM0
+d,−a

⊆ P where H ∈ FP

Via Observation 2.13, this result also holds for uniform families.
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Corollary: 5.6. (E,F)–PMCAM0
+d,−a ⊆ P where E,F ∈ FP

The proof of Theorem 5.5 is given by a high-level Turing machine algorithm that
simulates the computation steps of Π, an arbitrary AM0

+d,−a system. If Πx is a
member of a polynomially semi-uniform family of AM0

+d,−a systems Π that recognises
the problem X, our simulation if Πx operates using space and time polynomial in n,
where n is the size of a problem instance x ∈ X.

We begin with an important definition followed by a high-level view of the algorithm.
In Sections 5.2.1 and 5.2.2 the algorithm details are examined.

Definition: 5.7 (Equivalence class of membranes). An equivalence class of membranes
(denoted κ) is a set of membranes such that, in relation to a configuration C of a
membrane system, each membrane in the set has: the same parent p, the same label
h, an identical multiset of objects m, and exactly the same set of child membranes C.
More formally ∃p, h,m,C such that

κ =
{
i ∈ Vµ | (p, i) ∈ Eµ ∧

L(i) = h ∧
M(i) = m ∧

{c ∈ Vµ | (i, c) ∈ Eµ} = C
}

Remark 5.8. With this definition, no equivalence class κ of |κ| > 1 can contain a
membrane with children.

At a high level the data structure (see Section 5.2.1) used by the simulation
algorithm stores the membrane configuration at each time-step of a valid computation.
To conserve space complexity our algorithm does not explicitly store all membranes
in a system, instead it compresses the information into equivalence classes. Each
stored equivalence class k contains: the number (|κ| in binary) of membranes in the
class, a reference to each of the distinct object types in those membranes, and the
number (in binary) of copies of that object type. By storing the quantities of objects
and membranes in binary the algorithm needs only polynomial space to store the
potentially exponential numbers of both generated by type (a) and (es) rules.

While it is possible for a computation of an AM0
+d,−a system to need an exponential

number of equivalence classes (and thus exponential space in our simulating machine),
our analysis guarantees that there is another, equally valid, computation for the same
system that uses at most a polynomial number of equivalence classes. Since the system
is confluent (see Section 2.3), this “cheaper” computation path is just as valid to follow
as any alternative path. Our algorithm finds this path in deterministic polynomial
time by applying the observation that if a rule is applicable for a single membrane in
an equivalence class, then it is equally applicable to all members of that class. Via our
algorithm, after a single time-step, the increase in the number of equivalence classes
is never greater than |H||O|, the product of the number of membrane labels in the
system and the number of object types in the system.

In Section 5.2.2 we prove that by using our algorithm:
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• Type (a) rules do not increase the number of equivalence classes since the rule
has the same effect on each membrane of a given equivalence class.

• Type (b) rules increase the number of equivalence classes by at most |H||O| in a
time-step.

• Type (c) rules do not increase the number of equivalence classes since the involved
membranes in an equivalence class all eject the same type of object and remain
equivalent (the receiving, parent equivalence class contains a single membrane).

• Type (d) rules do not increase the number of equivalence classes since the rule
is applied to all membranes in the equivalence class. The contents and child
membranes are transfered to the parent equivalence class (of size one).

• Type (es) rules do not increase the number of equivalence classes, the algorithm
simply doubles the number of membranes in the affected equivalence class.

5.2.1 Algorithm data structure

Our algorithm uses a number of binary registers that is a polynomial of the length n

of the input. The length of each register is also bounded by a polynomial of n.
The data structure is used to store an entire configuration of the membrane system.

Given an initial configuration C0 of an AM0
+d,−a membrane system (guaranteed to

be poly(n) in size) we store an equivalence class for each initial membrane in the system.
The algorithm increases the number of equivalence classes as required throughout the
computation.

An equivalence class, κ, is stored in the following manner by the algorithm, this
encoding of an equivalence class is referred to as k.

• The register label stores the label of the equivalence class and is an element
of the set H (see Definition 2.1). The size of register label is fixed for all
configurations and is bounded by some polynomial of n.

• The register parent stores a reference to the equivalence class that contains this
membrane (always a single membrane). This value is bounded by the polynomial
depth of the membrane structure (note the depth of the membrane structure
may not increase during a computation).

• The children register references all equivalence classes that are immediate
children of this membrane. Its size is bounded by some polynomial of n via
Theorem 5.9.

• The register copies stores the number of membranes in the equivalence class.
In the worst case, the number that is stored in copies doubles at each time-step
(due to type (es) rules). Since we store this number in binary the register length
remains some polynomial of n.

• The register used is a Boolean and records if the membranes of this equivalence
class have been used by a rule in this time-step.
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Equivalence Class: k1
Equivalence Class: k2

Equivalence Class: k2Equivalence Class: k1

label

parent

children

copies

used

Equivalence Class: k|E|

Object: o1
Object: o2

Object: o2Object: o1

multiplicity

unavailable

Object: o|O|

Figure 5.5: A representation of the data-structure described in Section 5.2.1. There is
a number of equivalence classes each of which has an object register for each object
type in O.

Each membrane in an equivalence class contains an identical multiset of objects.
This multiset is stored in k in |O| different registers. For each object type o ∈ O, the
algorithm stores:

• The register o represents the type of the object (that is which element of O).
Throughout the computation, the size of the set O is fixed so this register does
not grow beyond its initial size.

• The multiplicity register is the number of copies of the object o in a membrane
of this equivalence class. Type (a) rules may cause an exponential growth in
the number of objects, however, o is stored using binary so the register length
remains some polynomial in n.

• The register unavailable stores the number of o objects that have been used
by rules this time-step. It is always the case that unavailable ≤ multiplicity

for each object type.

5.2.2 Simulation algorithm

Before proceeding to the algorithm we remind the reader that we are simulating a
family of confluent (see Section 2.3) recogniser active membrane systems. So given a
configuration of a recogniser membrane system, after t time-steps we could be in any
one of a large number of possible configurations due to non-determinism in the choice
of rules and objects. Confluence means that all computations are guaranteed to all
halt with the same result (either all accepting or all rejecting) so when designing an
algorithm to simulate such a system we are free to choose which computation is most
convenient for us.

Theorem 5.9 asserts that given an AM0
+d,−a system (sized polynomial in n)

there exists a computation such that each configuration in the computation can be
represented fully using a polynomial number of equivalence classes. This is shown by
proving that there is a computation path where the application of each rule type (a)
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to (es), in a single time-step, leads to at most an additive polynomial increase in the
number of equivalence classes.

In this section we prove Theorem 5.9 with an algorithm that when given C, a
configuration of an AM0

+d,−a system, accepts if the system halts in an accepting
configuration and rejects if the system halts in a rejecting configuration. This proof
only considers systems constructed in time polynomial in n, hence the size of all sets
(including O and H) in Π are limited to be elements of poly(n). We let Kx be a set of
equivalence classes that contains every membrane in a configuration Cx of a AM0

+d,−a

membrane system.

Theorem: 5.9. Given Πx, an AM0
+d,−a system that solves some instance x of

a problem, where Πx is of size polynomial in n = |x|, and where Πx has |K0| =
|Vµ| equivalence classes, |O| distinct object types, and |H| labels. Then there is a
computation starting with the initial configuration C0 of Πx such that at time t ∈ poly(n)
the number of equivalence classes is |Kt| = O(|K0|+ t|H||O|) which is a polynomial
of n.

Proof. Base case: There can be at most a polynomial number of membranes in the
initial configuration thus |K0| ∈ poly(n). Each of Lemmas 5.10 to 5.14 gives an
upper-bound on the increase in the number of equivalence classes after one time-step
for rule types (a) to (es), respectively. Lemma 5.11 has an additive increase of |H||O|
and the other four lemmas have an increase of 0. Thus at time 1 there is a computation
path where the number of equivalence classes is |K1| ≤ |K0|+ |H||O|.

Inductive step: Assume that |Ki|, the number of equivalence classes at time i, is
polynomial in n. Then, via Lemmas 5.10 to 5.14, there exists a computation path
where |Ki+1| ≤ |K0|+ i|H||O|.

After t time-steps we have |Kt| = O(|K0|+ t|H||O|), which is polynomial in n, if t
is.

We now give the algorithm that simulates the computation of any membrane system
of the class AM0

+d,−a in time polynomial to the input length n. The algorithm operates
on any valid initial configuration and successively simulates the developmental rules
of the membrane system. It takes as input a configuration of a AM0

+d,−a system Π
of size polynomial in n, which is then encoded into the registers of the simulating
device in polynomial time as a tree of equivalence classes. The algorithm then iterates
over the equivalence classes. At each iteration all available rules are applied, this
simulates a single time-step of the membrane system’s computation. The outer while
loop terminates when there are no more rules applicable, this indicates that the
computation has halted.

In line 1 the algorithm makes a depth first ordering of µ which it then loops
over O(|Vµ|) times. To construct a depth first ordering takes O(|Vµ|+ |Eµ|) steps [70]
and ensures that the rules are applied to the children of a membrane before its parents.
To store an equivalence class we count the number of objects in each multiset, this
is dominated by the size of the biggest multiset O(maxm(M)) (where maxm(M) =
max({|M(i)| | ∀i ∈ Vµ}). We store the references to the child membranes of each
equivalence class, in the worst case every other membrane is a child of this one, O(|Vµ|).
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Algorithm 1 Simulate membrane system(C0 of Π)

1: for each membrane i in the depth first ordering of µ store an k in KDF

2: for each object o store QM(i)(o) in the multiplicity of o
3: set the children of k to be references to i’s child membranes.
4: end for
5: while there are rules to apply
6: for each k in KDF

7: for each object type with multiplicity− unavailable > 0 in k

8: for each r in the set of rules for this label & object
9: add r to A if it is of type (a)

10: add r to B if it is of type (b)
11: add r to C if it is of type (c)
12: add r to D if it is of type (d)
13: add r to E if it is of type (es)
14: end for
15: end for
16: apply rules in A to k

17: apply rules in B to k

18: for each r in C,D,E

19: try to apply r to k //remember at most 1 will be applied

20: end for
21: end for
22: end while
23: if object yes is in the environment then accept
24: else if object no is in the environment then reject
25: else reject

This gives the loop in line 1 a running time of O((|Vµ|+ |Eµ|)+ |Vµ|(maxm(M)+ |Vµ|)).
The stored list of depth first ordered equivalence classes is denoted KDF.

The initial configuration is now stored in the registers, the algorithm loops t times
where t is the number of time-steps the membrane system runs until halting. For
each time-step the algorithm iterates through the depth first ordering of equivalence
classes, KDF (line 6) O(|Kt|). Note that the membrane structure cannot be affected by
rules such that the depth first ordering on the list of equivalence classes is disrupted.
Line 7 iterates over all the objects (O(|O|)) in this equivalence class and checks if
there are any available objects of that type. If there are, line 8 iterates through the
set of rules (O(|R|)) looking for those triggered by object o and label. If it finds such
a rule, it is added to a set of rules according to its type (we check if it can be applied
later).

Testing if a rule is applicable to k is straightforward and consists of checking if the
equivalence class has the correct label and contains an available object of the triggering
type (O(|O|)). Communication-in rules (type (b), line 10) are different, we must check
the labels of the children of k (which takes O(|Kt|) time). So the total time needed to
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build the list of applicable rules for an equivalence class is O(|O| · |R|(|O|+ |Kt|)).
At line 16, Algorithm 2 is called to apply all rules of type (a), the time complexity

mentioned below is O(|R|maxm(RM )). Then the rules of type (b) are applied using
Algorithm 3 with time complexity O(|H| · |Kt| · |R| · |O|).

In line 18 the algorithm considers rules of type (c), (d), and (es), only one of which
can be applied to an equivalence class in a time-step. Of the three Algorithms 4, 5,
and 6 to simulate the application of these rules, Algorithm 5 (type (d)) is the worst
case taking O(|O|+ |Kt|) time.

Thus, the total running time of our simulation algorithm is:

O
(
|Vµ|+ |Eµ|+ |Vµ|(maxm(M) + |Vµ|)

+ t · |Kt|(|O| · |R|(|O|+ |Kt|)
+ |R|maxm(RM )

+ |H| · |Kt| · |R| · |O|

+ |O|+ |Kt|)
)

This algorithm takes a membrane system as input and iterates through its configu-
rations until the membrane system halts. The algorithm tries to apply each rule from
the set of all applicable rules, if a membrane has been used by another rule or if the
object needed to trigger the rule has been used in a previous rule, the rule fails to be
applied. Thus, the final list of rules that are actually applied in a computation step
is maximal (see Definition 2.4) for this configuration since it is impossible to apply
another rule to the system.

We now explain Algorithm 2 which applies rules of type (a). This algorithm starts

Algorithm 2 Apply a set of rules A of type (a) to equivalence class k

1: for each rule r = (a, o, h,m) in A

2: let available be the multiplicity of o minus the o’s unavailable

3: set the multiplicity of o equal to the number of o’s unavailable

4: for each object u in m //the objects created by the rule r

5: increase the multiplicity of u by the number of o’s available

6: increase the number of u’s unavailable by o’s available

7: end for
8: end for

with a set of type (a) rules, A, and tries to apply them one by one, (O(|R|)). For each
rule, it calculates the number of objects available to be used by the rule. Since all
unused objects of type o will be used by the application of this rule, the algorithm sets
(in lines 2 and 3 the quantity of unused objects to be equal to the number unaffected
by the rule. Next the algorithm loops (line 4) over the multiset of objects in the
rule O(maxm(RM )) where RM is the set of multisets in rules of type (a). The quantity
of each object u in the multiset of m is increased by the number of available o objects
in the equivalence class. If an object appears x times in m, its counter is increased x

times in line 6. The total time complexity for this function is O(|R|maxm(RM )).
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We now prove that the number of equivalence classes does not increase due to
the application of Algorithm 2 and thus that the space complexity of the algorithm
remains a polynomial of n.

Lemma: 5.10 (Rules of type (a)). Given a configuration Ct of a AM0
+d,−a system

with |Kt| equivalence classes. After a single time-step, where only rules of type (a)
(object evolution) are applied via Algorithm 1, there exists a configuration Ct+1 such
that Ct ` Ct+1 and Ct+1 has |Kt| equivalence classes.

Proof. If a type (a) rule is applicable to an object in a membrane in an equivalence
class, then the rule is also applicable in exactly the same way to all membranes in
that class. Due to non-determinism in the choice of rules and objects, it could be the
case that the membranes in the equivalence class evolve differently. However we apply
the type (a) rules to objects using Algorithm 2 which chooses a valid computation
path where all membranes in an equivalence class evolve identically in the time-step.
Thus there is a computation step Ct ` Ct+1 where there is no increase in the number
of equivalence classes.

Now we describe the most awkward part of this simulation, rules of type (b).
Observe that type (b) rules have the potential to increase the number of equivalence
classes in one time-step by sending distinct object types into membranes in the
same equivalence class. For example, if objects of type o1 are sent into some of the
membranes in an equivalence class, and o2 objects are sent into the remainder, then
we increase the number of equivalence classes by 1. Algorithm 3 operates by applying
rules of type (b) in set B to the children of an equivalence class (line 2, O(|Kt|)) in
order of their labels (line 1, O(|H|)) and checks if the equivalence class has been used
by other rules already in this time-step. In line 3 we loop through the rules (O(|R|))
in the set B and try to apply those which communicate into membranes with the label
l we are currently considering. If there is more than one rule that communicates the
same object type into the same label, the first rule uses all the triggering objects or
all the destination membranes so the other rules cannot be applied. We calculate the
number of objects that this rule can communicate into a membrane (line 4). If the
number of objects is greater than the number of membranes in the child membrane, no
new equivalence classes are created. However if there are less objects than membranes
in the class, some membranes in an equivalence class receive an object that others
do not so we must split the equivalence class in two (line 9). The creation of the
new equivalence class is straightforward. The total running time of Algorithm 3
is O(|H| · |Kt| · |R| · |O|). However we must take care that the number of new classes
does not grow too quickly, this is addressed in the following lemma.

The next proof seems quite involved, however it can be summarised as follows: if
the objects to be communicated into a set of equivalence class of the same label are
sorted lexicographically, then the number of equivalence classes at the end of the step
can increase by at most the number of object types communicated in. As an analogy
we imagine some x pieces of string of various lengths, it is clear that if we make y
cuts to the strings (it is possible to miss the strings), there are at most x+ y pieces of
string.
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Algorithm 3 Apply a set of rules B of type (b) to equivalence class k

1: for each label l ∈ H in the system
2: for each child with label l in the children of k that is not used
3: for each rule r = (b, o, h, u) in B where l = h

4: let available be the multiplicity− unavailable of o in k.
5: if number of o’s available ≥ number of copies of child then
6: increase u’s multiplicity in child by o’s available

7: increase number of u’s unavailable in child by o’s available

8: decrement multiplicity of o in k by o’s available

9: else if number of o’s available is < copies of child then
10: create a new equivalence class and add after child in KDF

11: add new to the children of k and set new’s parent to be k

12: set new’s label to be the same as child’s
13: for each o in child

14: copy all the values of o from child to new

15: end for
16: increase the multiplicity of u in new by o’s available

17: increase the unavailable copies of u in new by o’s available

18: set the number of copies of new to be available

19: set the number of copies of child to be copies− available

20: set the new equivalence class used

21: decrease the multiplicity of o by the number of o’s available

22: end if
23: end for
24: end for
25: end for

Lemma: 5.11 (Rules of type (b)). Given a configuration Ct of a AM0
+d,−a system Π

with |Kt| equivalence classes. Let |H| be the number of membrane labels system Π.
Let |O| be the number of distinct object types in Π. After a single time-step, where
only rules of type (b) (incoming objects) are applied, there exists a configuration Ct+1

such that Ct ` Ct+1 and Ct+1 has ≤ |Kt|+ |H||O| equivalence classes.

Proof. First we consider the case where the algorithm is operating on an equivalence
class whose child equivalence classes are all of size 1. In this case the type (b)
communication rules are applied without any increase to the number of equivalence
classes.

The remainder of the proof is concerned with the other case, where the parent
membrane contains a non-zero number of equivalence classes of elementary membranes.

We now prove that for each membrane label, using Algorithm 3, that there is at
most an increase of |O| equivalence classes per time-step. Let O′ ⊆ O be the set object
types being communicated into a set of equivalence classes of the same label, in a
time-step.

Base case: We now show that when i = 1 (the size of the set of objects to
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Kt

Kt+1

a, a, a, a b, b, b, b, b c, c, c d, d, d, d e, e, e, e

Figure 5.6: An illustration of the effects of Algorithm 3 and proof of Lemma 5.11.
A set of equivalence classes, Kt, contains 3 classes of sizes 7, 9, and 5 (of label h).
The parent membrane contains the objects a, a, a, a, b, b, b, b, b, c, c, c, d, d, d, d, e, e, e, e.
The rules a[ ]h → [ a ]h, b[ ]h → [ b ]h, c[ ]h → [ c ]h, d[ ]h → [ d ]h, e[ ]h → [ e ]h
are applied. The resulting set of equivalence classes Kt+1 contains classes of size
4,3,2,3,4,4, and 1.

communicate |O′|), there is at most an increase of 1 to the number of equivalence
classes (with membrane label h ∈ H). Clearly, if we communicate x objects into x
membranes all in the same equivalence class, there is no increase in the number of
classes. However, if we communicate y < x objects of type o into x membranes
(all in the same equivalence class), then x− y membranes did not receive an object.
This causes the algorithm to create a new equivalence class of size y, an increase of
1 equivalence class for 1 object type. Note that the remainder of the old class (of
size x− y) still exists.

Inductive step: Assume |Kh
t+1| = |Kh

t | + i, that the number of new equivalence
classes (of label h) in a time-step is i where i is the number of distinct object types
communicated into the membrane.

We now give the case where |O′| = i + 1 object types are communicated. We
observe the algorithm in mid computation, at the point where all available objects
of types o1, . . . , oi ∈ O′ have been communicated into the equivalence classes. These
“used” equivalence classes and membranes can no longer receive objects in this time-step
and so to analyse the communication of the objects of the final type oi+1 we need
only focus on the remaining unused equivalence classes. Note that this situation is
analogous to the base case; we are communicating in objects of one distinct object
type into some equivalence classes. Hence we see that the increase in equivalence
classes for i+ 1 object types is equal to the increase for i types, plus 1. By iterating
backwards through the possible sizes of |O′| we reach the base case of i = 1 and see
that the maximum increase in the number |O′| of equivalence classes is equal to the
number of object types being communicated.

Thus given some equivalence classes Kh
t (at time-step t, all with label h), the

number of classes at time-step t+ 1 is |Kh
t+1| ≤ |Kh

t |+ |O|. This same process occurs
for each membrane label h ∈ H for each time-step. Thus over the whole time of
the system, the algorithm for type (b) rules produces no more than |K0| + t|O||H|
equivalence classes.

We now discuss rules of type (c). This algorithm has no major time complexity
overhead, we show that it does not cause an increase in the number of equivalence
classes.
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Algorithm 4 Apply a rule r = (c, o, h, {u}) of type (c) to equivalence class k

1: if the membranes of k have not been used then
2: let available be o’s multiplicity less the number of o’s unavailable

3: if the number of o’s available is greater than 0 then
4: decrement the number of multiplicity of o in k

5: increase the multiplicity of u by available in the parent of k
6: increase number of u’s unavailable by o’s available in parent of k
7: set the membranes of k to be used

8: end if
9: end if

Lemma: 5.12 (Rules of type (c)). Given a configuration Ct of a AM0
+d,−a system

with |Kt| equivalence classes. After a single time-step, where only rules of type (c)
(communication out) are applied, there exists a configuration Ct+1 such that Ct ` Ct+1

and Ct+1 has |Kt| equivalence classes.

Proof. If a type (c) rule is applicable to an object in a membrane in equivalence
class κk, then the rule is also applicable in exactly the same way to all membranes
in κk. Due to non-determinism in the choice of rules and objects it could be the
case that different membranes in κk eject different symbols. However we choose a
computation path such that all membranes in an equivalence class evolve identically
(each membrane ejects the same symbol), and so no new equivalence classes are created
from κk. The single parent of all the membranes in κk is in an equivalence class κj
which (via Remark 5.8) contains exactly one membrane and so no new equivalence
classes are created.

Thus there is a computation path Ct ` Ct+1 where there is no increase in the
number of equivalence classes.

We saw that AM0
−d systems (without dissolution rules) characterise NL in semi-

uniform families (Section 3.1) and that the power of uniform families is dependant on
the encoding function (when above AC0) (see Section 4.1). But, in Sections 5.1 we
saw that the addition of dissolution rules allows uniform and semi-uniform families
of AM0

+d to solve P-complete problems, hence one would expect dissolution to be a
difficult rule to simulate. However, storing membranes in equivalence classes makes
dissolution a relatively easy rule to simulate. Algorithm 5 is quite straightforward,
line 6 moves all the objects to the parent membrane, its time complexity is O(|O|).
To adjust the parent pointer of each child equivalence class in line 10 we need at
most O(|Vµ|) time. The total worst case running time is O(|O|+ |Vµ|). We now show
that rules of type (d) do not increase the number of equivalence classes. In fact, such
rules can decrease the number of equivalence classes.

Lemma: 5.13 (Rules of type (d)). Given a configuration Ct of a AM0
+d,−a system

with |Kt| equivalence classes. After a single time-step, where only rules of type
(d) (membrane dissolution) are applied then for all Ct+1, such that Ct ` Ct+1, Ct+1

has ≤ |Kt| equivalence classes.
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Algorithm 5 Apply a rule r = (d, o, h, {u}) of type (d) to equivalence class k

1: if the equivalence class membranes have not been used then
2: if o’s multiplicity is greater than o’s unavailable then
3: decrement the multiplicity of o in k

4: increment the multiplicity of u in k

5: increment the unavailable copies of u in k

6: for each o in k

7: add o’s multiplicity× k’s copies to o’s multiplicity in parent

8: add o’s multiplicity× k’s copies to o’s unavailable in parent

9: end for
10: for all children of k
11: set the parent of the child membrane to be the parent of k
12: end for
13: add the children of k to the children of parent
14: remove k from the set KDF

15: end if
16: end if

Proof. If there is at least one type (d) rule that is applicable to an object and a
membrane in equivalence class κk, then that rule is applicable in exactly the same
way to all membranes in κk. We chose the computation path where this is the case.
Thus a whole equivalence class of membranes dissolve together, reducing the number
of equivalence classes in total. The single parent of all the membranes in κk is in an
equivalence class κj which, by Remark 5.8, contains exactly one membrane and so
no new equivalence classes are created from the dissolution of all membranes in κj .
Thus for all Ct+1, where Ct ` Ct+1, there is no increase in the number of equivalence
classes.

We now provide an algorithm for rules of type (es).

Algorithm 6 Apply rule r = (es, o, h, {u, u}) of type (es) to equivalence class k

1: if the membranes of k have not been used then
2: decrement the multiplicity of o in k

3: increment the multiplicity of u in k

4: increment the number of us unavailable in k

5: double the number of copies of k
6: set the membranes of k to be used

7: end if

This algorithm only involves incrementing, decrementing and doubling counters
and so has a trivial time complexity. We now show that despite increasing the number
of membranes, the number of equivalence classes remains unchanged.

Lemma: 5.14 (Rules of type (es)). Given a configuration Ct of a AM0
+d,−a system

with |Kt| equivalence classes. After a single time-step, where only rules of type (es)
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(symmetric elementary membrane division) are applied, there exists a configuration Ct+1

such that Ct ` Ct+1 and Ct+1 has ≤ |Kt| equivalence classes.

Proof. If a type (es) rule is applicable to an object and membrane in equivalence
class κk, then the rule is also applicable in exactly the same way to all membranes
in κk. We chose the computation path where all membranes in an equivalence class
evolve identically in a time-step, each membrane in κk divides using the same rule.
The number of membranes in κk doubles, but since each new membrane is identical,
no new equivalence classes are created from κk.

Thus there is a computation path Ct ` Ct+1 where there is no increase in the
number of equivalence classes.

5.3 Discussion

In Chapters 3 and 4 when some classes of AM0 systems are restricted from being P-
(semi-)uniform to being AC0-(semi-)uniform they no longer characterise P. We also
saw that uniform and semi-uniform families do not always have equal power. In this
chapter however we have shown that for at least one variety of AM0, AC0-uniform
and semi-uniform families both characterise P.

Previous results relied on FP computable (semi-)uniformity conditions to prove P

lower-bounds [30, 54], this is somewhat unsatisfying as it says nothing about the
complexity of the system itself. We have given the first concrete P lower-bound for
active membrane systems, an AC0-uniform membrane family to solve a P-complete
problem. In fact, our characterisation holds for all uniformity conditions contained in
and including P (see Figure 5.1).

Each membrane in the uniform family uses only evolution and dissolution rules
to solve the P-complete problem. Since only evolution rules are necessary to solve
problems in NL (see Chapter 3) we immediately wonder what role dissolution plays in
increasing the complexity. Can uniform families of membranes using only dissolution
rules solve all of P alone or is the interaction with evolution rules necessary.

We also presented a P upper-bound for (semi-)uniform families ofAM0
+d,−a systems.

These systems use a slight restriction of weak elementary division so we have given
a partial result for the P-Conjecture. This result is also the first AM0 system with
dissolution rules to have a P rather than PSPACE upper-bound.

The restriction we make to the system is to replace division rules of type (e)
with symmetric division (es) (so called due to its resemblance to symmetric mitosis
in biological cells). A system with symmetric weak elementary division (es) can
easily generate an exponential number of membranes and objects in polynomial time.
However, this result shows that the symmetric rule restricts the system so that it
does not create exponentially many different membranes on all computation paths.
This result can be interpreted in two ways, first that any future computers built using
symmetric division and without charges will not be able to solve NP-complete problems
or any problem outside of P. For those designing parallel simulators of membrane
systems this result means that any system that uses both dissolution and evolution
rules will (unless NC = P) be extremely difficult to parallelise efficiently.
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Our upper-bound in Section 5.2 cannot be applied naively for asymmetric weak
elementary division (ew). For example the rules

[x0 ] → [ 00 ][ 10 ],

[x1 ] → [ 01 ][ 11 ],

[x2 ] → [ 02 ][ 12 ],

will when given x1, x2, x3 as input, generate 23 membranes that (without some non
trivial extension to our proof) can only be stored in 23 equivalence classes.

By extending the definition of equivalence class in a recursive manner so that the
child membranes of two membranes x and y are equal sets of equivalence classes we
may be able to extend the technique of this proof to systems with symmetric non-
elementary division rules. AM0 systems with strong non-elementary rules are known
to solve PSPACE [3] and those with weak non-elementary division [21] are known to
solve NP ∪ coNP so if systems with symmetric versions of these rules characterised P

it would be very interesting.
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Conclusions

Membrane computers are at the early stages of experimental implementation. Recent
progress has been made in the laboratory [25], in custom silicon hardware [46], and in
software running on massively parallel devices [13]. By studying the computational
complexity of cellular operations we provide information for researchers as to which
features are the most important for inclusion in their implementations of membrane
systems.

Our results have particular relevance for those seeking to exploit the natural
parallelism inherent in cellular systems for computation. Previously all∗ complexity
results for membrane systems were shown exclusively using polynomial time uniformity.
This was a reasonable choice since the focus of the research was to discover which
variants could solve NP-complete problems and which could not. However, due to the
way the input is encoded in membrane systems, polynomial time uniformity prevents
membrane systems from characterising any class of problems contained in P. This does
is not much of an obstacle until we wish to discuss the class P and below. When we
wish (using a physical device) to solve problems in a parallel manner, being restricted
to classes that contain P is not an ideal situation since P-complete problems are
thought to be intrinsically sequential. That is, no significant speed-up is achieved
(unless NC = P) when we polynomially increase the number of processors working on
a P-complete problem [27].

But what about the Parallel Computation Thesis [26]? Parallel machines can decide
problems in PSPACE exponentially faster than sequential machines. However, to do
so they require an exponential number of processors. When it comes to implementing
such a device, providing an exponential number of processors is a major set back.
Initially many people dreamed of “growing” processors using the native ability of cells
to duplicate themselves, however a brute force approach to such intractable problems
with cellular computers will run into the same difficulty. For example, to use brute
force to solve the Traveling Salesman problem (an NP-complete problem) with 125
cities using Escherichia coli bacteria as our implementation medium would require
2125 individual E. coli with a mass equal to that of the moon†. Time, however, is

∗All but Obtu lowicz [47].
†Assuming the mass of the Moon is 7.347× 1022kg and the mass of an E. coli is 1× 10−15kg
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on our side: given perfect growing conditions, a single E. Coli can divide 125 times
in just over 2 days. Then we just need to locate the single E. coli that contains the
correct solution. Thus any naive approach to solving intractable problems with cellular
computers will have the same problems as any other classical computing device.

So, for practical parallel implementations of membrane systems perhaps it is
more rewarding to focus on problems in NC, where a modest polynomial amount
of processors provides the desired speed-up. But, using P uniformity, it seems that
all active membrane systems either characterise P or PSPACE. However, we had no
success trying to solve P-complete problems with systems without dissolution rules
where were said to characterise P [30]. We found the reason was that these systems
were actually weaker than P and the uniformity function was artificially inflating the
set of problems solvable by the system. It turned out that semi-uniform families of
these systems actually characterised NL. For those building efficient parallel simulators,
this result is quite useful since NL ⊆ NC2, so simulations of these systems can be
parallelized. This result is also useful for sequential simulators since the problems
in NL are solvable using very little memory (O(log2 n)) on a deterministic polynomial
time Turing machine [63].

Our P lower-bound in Section 5.1 (the first genuine P lower-bound for active
membranes systems) is important for those attempting to write fast parallel simulators
for membrane systems [13]. We gave a uniform family to solve a P-complete problem
which uses only evolution and dissolution rules, this implies (along with other known
results [74, 3, 21]) that any system combining dissolution rules with some other rule
type can solve P-compete problems and thus cannot be simulated with better than
linear time overhead (if NC ( P).

We presented in Chapter 4 an interesting gap in the set of problems solved by
uniform and semi-uniform families of AM0

−d systems. For those seeking to implement
membrane systems biologically we showed that uniform families of AM0

−d systems
are severely crippled and cannot be used to solve all problem instances of a certain
size, in fact they are unable to solve any (interesting) problem independently of
the device that constructed the system. However, the same system can solve NL

complete problems if we design devices that solve only a single problem instance. This
result proves something general about families of finite devices that is independent
of particular formalisms and can be applied to other computational models besides
membrane systems. Besides membrane systems and circuits, some other models that
use notions of uniformity and semi-uniformity include families of neural networks,
molecular and DNA computers, tile assembly systems, branching programs and cellular
automata [9, 16, 49, 64, 65]. Our results could conceivably be applied to these models.

It is known that active membrane systems without division rules are upper-bounded
by P [75]; in Section 5.2 we give the first P upper-bound for active membrane systems
with division and dissolution rules. However, this is for a restricted form of division
where the resulting membranes are identical; we refer to this as symmetric division.
This is a partial result for the P-conjecture which we hope to fully resolve in the near
future.

This thesis also argues that in general, membrane computing should use at most
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logspace uniformity (has been standard in circuit complexity since its inception) when
discussing systems that solve problems in P. Ideally, all systems would be FO-uniform or
DLOGTIME-uniform (deterministic log time) [10, 33], and we would use FO projections
instead of reductions. However, in this thesis we chose to use AC0-uniformity and AC0

reductions because this allows us to focus on the results rather than the reductions.
FAC0 is weak enough for our purposes since AC0 ( NC1 ⊆ NL ⊆ P[24] and it means
that with very little effort we can show that some pre-existing lower-bounds still hold.
(When giving explicit lower-bounds, most authors use simple mappings and so with
only minor tweaks to their mappings we can show that their results hold under AC0

reductions.)
We now show that an existing PSPACE lower-bound is unaffected by the change

for polynomial time uniformity to AC0 uniformity. We will then discuss some future
work and open problems.

6.1 AC0-uniformity and PSPACE

In Figure 1.1 there is a PSPACE characterisation for P-uniform families using rules
of type (f). We now quickly sketch how the same characterisation also appears in
Figure 1.2 with its lower-bound unaffected by the restriction to AC0 uniformity.

Clearly stricter uniformity notions have no affect on the PSPACE upper-bound [67].
The original [7] lower-bound is a P-uniform family to solve QSAT (in conjunctive and
“even number of variables” normal forms). The PSPACE-complete problem of QSAT is
defined as follows:

Problem: 6.1 (Qualified Boolean Satisfiability (QSAT)).
Instance: Given a boolean expression ϕ in conjunctive normal form ϕ = C1∧C2 . . .∧
Cm where Ci = yi,1 ∨ . . . ∨ yi,li , 1 ≤ i ≤ m where yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤
m, 1 ≤ k ≤ li.
Question: Does that formula ∃x1∀x2 . . . ∃xn−1∀xn ϕ(x1, . . . , xn) evaluate to true?

The original uniformity condition specified the membrane family using the num-
ber 〈n,m〉. This is a function computed from n, the number of variables in the instance,
and m, the number of clauses in the instance. However, the function 〈n,m〉 is neither
computable nor reversible in FAC0. To generate the family without computing this
function, we assume that the input instance of QSAT is in a normal form where n = m.

Normal Form: 6.2. An instance of QSAT is in NVENC normal form if the number
of variables in the instance is equal to the number of clauses.

Given an instance of QSAT in conjunctive and even-variables normal forms, we
can adjust the instance such that the number of variables (n) and clauses (m) are
equal as follows.

If n < m we add m − n “junk” variables {xn+1, . . . , xm} to the instance, the
variables are not listed in the clauses and so do not affect the first n bits of the
satisfying solution. If the number of variables is now odd then we add another
variable xm + 1 and add the tautological clause (x1 ∨ ¬x1) to ϕ.
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If n > m we add n−m copies of the tautological clause (x1 ∨ ¬x1) to ϕ. These
clauses always evaluate to true and so do not affect the satisfying assignment to ϕ.

Our new function f to construct the family takes the length of the instance 1|x|, x ∈
QSAT ∪ coQSAT as input. It is trivial to calculate the number n from 1|x|, n is then
used to generate a membrane system that is identical to the family member indicated
by the number 〈n, n〉 as specified in [7]. The function f is computable in FAC0: the
most complicated aspect involves multiplication by constants (essentially addition)
which is known [72] to be in FAC0.

The input encoding e function maps the variables in the clauses to objects and is
straightforward to compute in FAC0.

Thus AC0-uniform families of AM0 using strong elementary division can solve at
most PSPACE-complete problems.

6.2 Conjectures and Problems

We collect here the future problems and directions that were mentioned throughout
this thesis and some additional conjectures.

1. What types of model have uniform/semi-uniform gaps? So far we have only
observed a uniform/semi-uniform gap in systems where the semi-uniform family
characterises NL. Is this gap a feature of weaker models or can a similar result
be shown for more powerful families? The gap may be a consequence of the lack
of context sensitivity in some systems.

2. Can we prove that object multiplicities for all AM systems are not essential for
lower-bound results? We have shown that it is possible to replace multisets of
objects with sets of objects for AM0

−d systems. Can we do the same for all AM
systems? None of the membranes systems specified in this thesis (including that
in Section 6.1) use multiplicities, providing evidence that this is the case. This
result would make proving upper-bounds much easier on these systems.

3. Study the complexity of families where each membrane system in a uniform
family is easier to evaluate than it is to construct. It is unclear how much
the function f (when its domain is limited to {1}∗) can help the resulting
systems “cheat” and solve harder problems. To examine this, the encoding
function e must be extremely weak, for example be the identity function or
computable in FAC0. We can pose this as (F,AC0)–PMCAM0−d

?= AC0 where
F ∈ {P,PSPACE,EXP}. This echoes similar open problems in circuit uniformity,
for example P-uniform AC0 ?= FO-uniform AC0 [8].

4. Can we characterise the NC hierarchy with active membrane systems? We have
shown that semi-uniform families of AM0

−d systems characterise NL which is
contained in the class NC2. If active membrane systems are a good model of
parallel computation it should be possible to characterise every level of the NC

hierarchy. This characterisation my also extend into a characterisation of the
polynomial hierarchy between P and PSPACE.
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5. Is there a link between monotone circuit complexity and active membranes?
Can we define a restriction on membrane systems such that they can compute
only monotone boolean functions? If this is the case could we possibly prove
lower-bounds for problems in terms of membrane systems [58]?

6. Do (semi-)uniform AM0 systems using only dissolution rules characterise P?
We have shown that systems with only type (a) rules characterise NL, while those
with (a) and (d) rules characterise P. What role do type (d) rules play in this jump
in complexity? If they characterise NL there could be a uniform/semi-uniform
gap for this model. If they characterise P, it would improve our lower-bound in
Section 5.1.

7. Resolve the P-conjecture. We are currently attempting to resolve this conjecture
and have another partial solution for systems with weak non-elementary division
and dissolution [74] which is not included this thesis.

8. Symmetric non-elementary division. It would be interesting to see if families
of systems with symmetric non-elementary division rules are weaker than their
asymmetric equivalents (rules of type (ew) and (f)) which can solve problems
in NP [21] and PSPACE [7]. Perhaps the proof we gave in Section 5.2 could be
extended to solve such problems if we extended the definition of equivalence
class so that identical membranes with identical subtrees of child membranes
are part of the same equivalence class.

9. Do uniform families of general recogniser AM0
−d a uniform/semi-uniform gap?

Our proof for standard recogniser systems does not trivially extend to general
recogniser systems. It would be extremely interesting if uniform families of such
systems could solve NL complete problems, however it seems unlikely to be the
case.
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Francisco J. Romero-Campero. Computational efficiency of dissolution rules in
membrane systems. International Journal of Computer Mathematics, 83(7):593–
611, 2006.

[31] Neil Immerman. Nondeterministic space is closed under complementation. SIAM
Journal of Computing, 17(5):935–938, 1988.

[32] Neil Immerman. Expressibility and parallel complexity. SIAM Journal on
Computing, 18(3):625–638, 1989.

[33] Neil Immerman. Descriptive Complexity. Springer, 1999.

[34] David S. Johnson. Machine models and simulations. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume A, pages 69–161. Elsevier
Science/MIT Press, Amsterdam, 1990.

[35] Neil D. Jones. Space-bounded reducibility among combinatorial problems. Journal
of Computer and System Sciences, 11(1):68–85, 1975.

89



BIBLIOGRAPHY BIBLIOGRAPHY

[36] Valentine Kabanets. Nonuniformly Hard Boolean Functions and Uniform Com-
plexity Classes. PhD thesis, University of Toronto, 2000.

[37] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85—-103. Plenum, New York, 1972.

[38] Donald E. Knuth. The Art of Computer Programming: Seminumerical Algorithms,
volume 2. Addison-Wesley, third edition, 1998.

[39] R. E. Ladner. The circuit value problem is log space complete for P. SIGACT
News, 7(1):18–20, 1975.

[40] Leonid A Levin. Universal search problems (Óíèâåðñàëüíûå çàäà÷è ïåðåáî-

ðà). Problems of Information Transmission (Ïðîáëåìû ïåðåäà÷è èíôîðìàöèè),
9(3):265—-266, 1973.

[41] Henry Markram. The blue brain project. Nature Reviews Neuroscience, 7(2):153–
160, February 2006.
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